In this work, we aim to characterize the statistical complexity of realizable regression both in the PAC learning setting and the online learning setting. Previous work had established the sufficiency of finiteness of the fat shattering dimension for PAC learnability and the necessity of finiteness of the scaled Natarajan dimension, but little progress had been made towards a more complete characterization since the work of Simon (SICOMP '97). To this end, we first introduce a minimax instance optimal learner for realizable regression and propose a novel dimension that both qualitatively and quantitatively characterizes which classes of real-valued predictors are learnable. We then identify a combinatorial dimension related to the Graph dimension that characterizes ERM learnability in the realizable setting. Finally, we establish a necessary condition for learnability based on a combinatorial dimension related to the DS dimension, and conjecture that it may also be sufficient in this context. Additionally, in the context of online learning we provide a dimension that characterizes the minimax instance optimal cumulative loss up to a constant factor and design an optimal online learner for realizable regression, thus resolving an open question raised by Daskalakis and Golowich in STOC '22.
Motivated by understanding and analysis of large-scale machine learning under heavy-tailed gradient noise, we study decentralized optimization with gradient clipping, i.e., in which certain clipping operators are applied to the gradients or gradient estimates computed from local nodes prior to further processing. While vanilla gradient clipping has proven effective in mitigating the impact of heavy-tailed gradient noise in non-distributed setups, it incurs bias that causes convergence issues in heterogeneous distributed settings. To address the inherent bias introduced by gradient clipping, we develop a smoothed clipping operator, and propose a decentralized gradient method equipped with an error feedback mechanism, i.e., the clipping operator is applied on the difference between some local gradient estimator and local stochastic gradient. We consider strongly convex and smooth local functions under symmetric heavy-tailed gradient noise that may not have finite moments of order greater than one. We show that the proposed decentralized gradient clipping method achieves a mean-square error (MSE) convergence rate of $O(1/t^\delta)$, $\delta \in (0, 2/5)$, where the exponent $\delta$ is independent of the existence of higher order gradient noise moments $\alpha > 1$ and lower bounded by some constant dependent on condition number. To the best of our knowledge, this is the first MSE convergence result for decentralized gradient clipping under heavy-tailed noise without assuming bounded gradient. Numerical experiments validate our theoretical findings.
In this paper, we discuss adaptive approximations of an elliptic eigenvalue optimization problem in a phase-field setting by a conforming finite element method. An adaptive algorithm is proposed and implemented in several two dimensional numerical examples for illustration of efficiency and accuracy. Theoretical findings consist in the vanishing limit of a subsequence of estimators and the convergence of the relevant subsequence of adaptively-generated solutions to a solution to the continuous optimality system.
In this work, we study the problem of common and unique feature extraction from noisy data. When we have N observation matrices from N different and associated sources corrupted by sparse and potentially gross noise, can we recover the common and unique components from these noisy observations? This is a challenging task as the number of parameters to estimate is approximately thrice the number of observations. Despite the difficulty, we propose an intuitive alternating minimization algorithm called triple component matrix factorization (TCMF) to recover the three components exactly. TCMF is distinguished from existing works in literature thanks to two salient features. First, TCMF is a principled method to separate the three components given noisy observations provably. Second, the bulk of the computation in TCMF can be distributed. On the technical side, we formulate the problem as a constrained nonconvex nonsmooth optimization problem. Despite the intricate nature of the problem, we provide a Taylor series characterization of its solution by solving the corresponding Karush-Kuhn-Tucker conditions. Using this characterization, we can show that the alternating minimization algorithm makes significant progress at each iteration and converges into the ground truth at a linear rate. Numerical experiments in video segmentation and anomaly detection highlight the superior feature extraction abilities of TCMF.
In this paper, we address the challenge of differential privacy in the context of graph cuts, specifically focusing on the multiway cut and the minimum $k$-cut. We introduce edge-differentially private algorithms that achieve nearly optimal performance for these problems. Motivated by multiway cut, we propose the shifting mechanism, a general framework for private combinatorial optimization problems. This framework allows us to develop an efficient private algorithm with a multiplicative approximation ratio that matches the state-of-the-art non-private algorithm, improving over previous private algorithms that have provably worse multiplicative loss. We then provide a tight information-theoretic lower bound on the additive error, demonstrating that for constant $k$, our algorithm is optimal in terms of the privacy cost. The shifting mechanism also allows us to design private algorithm for the multicut and max-cut problems, with runtimes determined by the best non-private algorithms for these tasks. For the minimum $k$-cut problem we use a different approach, combining the exponential mechanism with bounds on the number of approximate $k$-cuts to get the first private algorithm with optimal additive error of $O(k\log n)$ (for a fixed privacy parameter). We also establish an information-theoretic lower bound that matches this additive error. Furthermore, we provide an efficient private algorithm even for non-constant $k$, including a polynomial-time 2-approximation with an additive error of $\tilde{O}(k^{1.5})$.
In this work, we conduct a systematic study of stochastic saddle point problems (SSP) and stochastic variational inequalities (SVI) under the constraint of $(\epsilon,\delta)$-differential privacy (DP) in both Euclidean and non-Euclidean setups. We first consider Lipschitz convex-concave SSPs in the $\ell_p/\ell_q$ setup, $p,q\in[1,2]$. Here, we obtain a bound of $\tilde{O}\big(\frac{1}{\sqrt{n}} + \frac{\sqrt{d}}{n\epsilon}\big)$ on the strong SP-gap, where $n$ is the number of samples and $d$ is the dimension. This rate is nearly optimal for any $p,q\in[1,2]$. Without additional assumptions, such as smoothness or linearity requirements, prior work under DP has only obtained this rate when $p=q=2$ (i.e., only in the Euclidean setup). Further, existing algorithms have each only been shown to work for specific settings of $p$ and $q$ and under certain assumptions on the loss and the feasible set, whereas we provide a general algorithm for DP SSPs whenever $p,q\in[1,2]$. Our result is obtained via a novel analysis of the recursive regularization algorithm. In particular, we develop new tools for analyzing generalization, which may be of independent interest. Next, we turn our attention towards SVIs with a monotone, bounded and Lipschitz operator and consider $\ell_p$-setups, $p\in[1,2]$. Here, we provide the first analysis which obtains a bound on the strong VI-gap of $\tilde{O}\big(\frac{1}{\sqrt{n}} + \frac{\sqrt{d}}{n\epsilon}\big)$. For $p-1=\Omega(1)$, this rate is near optimal due to existing lower bounds. To obtain this result, we develop a modified version of recursive regularization. Our analysis builds on the techniques we develop for SSPs as well as employing additional novel components which handle difficulties arising from adapting the recursive regularization framework to SVIs.
In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.
In the past decade, we have witnessed the rise of deep learning to dominate the field of artificial intelligence. Advances in artificial neural networks alongside corresponding advances in hardware accelerators with large memory capacity, together with the availability of large datasets enabled researchers and practitioners alike to train and deploy sophisticated neural network models that achieve state-of-the-art performance on tasks across several fields spanning computer vision, natural language processing, and reinforcement learning. However, as these neural networks become bigger, more complex, and more widely used, fundamental problems with current deep learning models become more apparent. State-of-the-art deep learning models are known to suffer from issues that range from poor robustness, inability to adapt to novel task settings, to requiring rigid and inflexible configuration assumptions. Ideas from collective intelligence, in particular concepts from complex systems such as self-organization, emergent behavior, swarm optimization, and cellular systems tend to produce solutions that are robust, adaptable, and have less rigid assumptions about the environment configuration. It is therefore natural to see these ideas incorporated into newer deep learning methods. In this review, we will provide a historical context of neural network research's involvement with complex systems, and highlight several active areas in modern deep learning research that incorporate the principles of collective intelligence to advance its current capabilities. To facilitate a bi-directional flow of ideas, we also discuss work that utilize modern deep learning models to help advance complex systems research. We hope this review can serve as a bridge between complex systems and deep learning communities to facilitate the cross pollination of ideas and foster new collaborations across disciplines.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.