Memory interference may heavily inflate task execution times in Heterogeneous Systems-on-Chips (HeSoCs). Knowing worst-case interference is consequently fundamental for supporting the correct execution of time-sensitive applications. In most of the literature, worst-case interference is assumed to be generated by, and therefore is estimated through read-intensive synthetic workloads with no caching. Yet these workloads do not always generate worst-case interference. This is the consequence of the general results reported in this work. By testing on multiple architectures, we determined that the highest interference generation traffic pattern is actually hardware dependant, and that making assumptions could lead to a severe underestimation of the worst-case (in our case, of more than 9x).
Heterogeneous systems, consisting of CPUs and GPUs, offer the capability to address the demands of compute- and data-intensive applications. However, programming such systems is challenging, requiring knowledge of various parallel programming frameworks. This paper introduces COMPAR, a component-based parallel programming framework that enables the exposure and selection of multiple implementation variants of components at runtime. The framework leverages compiler directive-based language extensions to annotate the source code and generate the necessary glue code for the StarPU runtime system. COMPAR provides a unified view of implementation variants and allows for intelligent selection based on runtime context. Our evaluation demonstrates the effectiveness of COMPAR through benchmark applications. The proposed approach simplifies heterogeneous parallel programming and promotes code reuse while achieving optimal performance.
AIOps (Artificial Intelligence for IT Operations) solutions leverage the massive data produced during the operations of large-scale systems and machine learning models to assist software engineers in their system operations. As operation data produced in the field are subject to constant evolution from factors like the changing operational environment and user base, the models in AIOps solutions need to be constantly maintained after deployment. While prior works focus on innovative modeling techniques to improve the performance of AIOps models before releasing them into the field, when and how to maintain AIOps models remain an under-investigated topic. In this work, we performed a case study on three large-scale public operation data to assess different model maintenance approaches regarding their performance, maintenance cost, and stability. We observed that active model maintenance approaches achieve better and more stable performance than a stationary approach. Particularly, applying sophisticated model maintenance approaches (e.g., concept drift detection, time-based ensembles, or online learning approaches) could provide better performance, efficiency, and stability than simply retraining AIOps models periodically. In addition, we observed that, although some maintenance approaches (e.g., time-based ensemble and online learning) can save model training time, they significantly sacrifice model testing time, which could hinder their applications in AIOps solutions where the operation data arrive at high speed and volume and where instant predictions are required. Our findings highlight that practitioners should consider the evolution of operation data and actively maintain AIOps models over time. Our observations can also guide researchers and practitioners to investigate more efficient and effective model maintenance techniques that fit in the context of AIOps.
Social intelligence manifests the capability, often referred to as the Theory of Mind (ToM), to discern others' behavioral intentions, beliefs, and other mental states. ToM is especially important in multi-agent and human-machine interaction environments because each agent needs to understand the mental states of other agents in order to better respond, interact, and collaborate. Recent research indicates that the ToM model possesses the capability to infer beliefs, intentions, and anticipate future observations and actions; nonetheless, its deployment in tackling intricate tasks remains notably limited. The challenges arise when the number of agents increases, the environment becomes more complex, and interacting with the environment and predicting the mental state of each other becomes difficult and time consuming. To overcome such limits, we take inspiration from the Theory of Collective Mind (ToCM) mechanism, predicting observations of all other agents into a unified but plural representation and discerning how our own actions affect this mental state representation. Based on this foundation, we construct an imaginative space to simulate the multi-agent interaction process, thus improving the efficiency of cooperation among multiple agents in complex decision-making environments. In various cooperative tasks with different numbers of agents, the experimental results highlight the superior cooperative efficiency and performance of our approach compared to the Multi-Agent Reinforcement Learning (MARL) baselines. We achieve consistent boost on SNN- and DNN-based decision networks, and demonstrate that ToCM's inferences about others' mental states can be transferred to new tasks for quickly and flexible adaptation.
General Visual Inspection is a manual inspection process regularly used to detect and localise obvious damage on the exterior of commercial aircraft. There has been increasing demand to perform this process at the boarding gate to minimize the downtime of the aircraft and automating this process is desired to reduce the reliance on human labour. This automation typically requires the first step of estimating a camera's pose with respect to the aircraft for initialisation. However, localisation methods often require infrastructure, which can be very challenging when performed in uncontrolled outdoor environments and within the limited turnover time (approximately 2 hours) on an airport tarmac. In addition, access to commercial aircraft can be very restricted, causing development and testing of solutions to be a challenge. Hence, this paper proposes an on-site infrastructure-less initialisation method, by using the same pan-tilt-zoom camera used for the inspection task to estimate its own pose. This is achieved using a Deep Convolutional Neural Network trained with only synthetic images to regress the camera's pose. We apply domain randomisation when generating our dataset for training our network and improve prediction accuracy by introducing a new component to an existing loss function that leverages on known aircraft geometry to relate position and orientation. Experiments are conducted and we have successfully regressed camera poses with a median error of 0.22 m and 0.73 degrees.
Fish tracking is a key technology for obtaining movement trajectories and identifying abnormal behavior. However, it faces considerable challenges, including occlusion, multi-scale tracking, and fish deformation. Notably, extant reviews have focused more on behavioral analysis rather than providing a comprehensive overview of computer vision-based fish tracking approaches. This paper presents a comprehensive review of the advancements of fish tracking technologies over the past seven years (2017-2023). It explores diverse fish tracking techniques with an emphasis on fundamental localization and tracking methods. Auxiliary plugins commonly integrated into fish tracking systems, such as underwater image enhancement and re-identification, are also examined. Additionally, this paper summarizes open-source datasets, evaluation metrics, challenges, and applications in fish tracking research. Finally, a comprehensive discussion offers insights and future directions for vision-based fish tracking techniques. We hope that our work could provide a partial reference in the development of fish tracking algorithms.
Artificial intelligence operations (AIOps) play a pivotal role in identifying, mitigating, and analyzing anomalous system behaviors and alerts. However, the research landscape in this field remains limited, leaving significant gaps unexplored. This study introduces a novel hybrid framework through an innovative algorithm that incorporates an unsupervised strategy. This strategy integrates Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs) and uses a custom loss function to substantially enhance the effectiveness of log anomaly detection. The proposed approach encompasses the utilization of both simulated and real-world datasets, including logs from SockShop and Hadoop Distributed File System (HDFS). The experimental results are highly promising, demonstrating significant reductions in pseudo-positives. Moreover, this strategy offers notable advantages, such as the ability to process logs in their raw, unprocessed form, and the potential for further enhancements. The successful implementation of this approach showcases a remarkable reduction in anomalous logs, thus unequivocally establishing the efficacy of the proposed methodology. Ultimately, this study makes a substantial contribution to the advancement of log anomaly detection within AIOps platforms, addressing the critical need for effective and efficient log analysis in modern and complex systems.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.