亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Medical residency training is often associated with physically intense and emotionally demanding tasks, requiring them to engage in extended working hours providing complex clinical care. Residents are hence susceptible to negative psychological effects, including stress and anxiety, that can lead to decreased well-being, affecting them achieving desired training outcomes. Understanding the daily behavioral patterns of residents can guide the researchers to identify the source of stress in residency training, offering unique opportunities to improve residency programs. In this study, we investigate the workplace behavioral patterns of 43 medical residents across different stages of their training, using longitudinal wearable recordings collected over a 3-week rotation. Specifically, we explore their ambulatory patterns, the computer access, and the interactions with mentors of residents. Our analysis reveals that residents showed distinct working behaviors in walking movement patterns and computer usage compared to different years in the program. Moreover, we identify that interaction patterns with mentoring doctors indicate stress, burnout, and job satisfaction.

相關內容

Traditional continual event detection relies on abundant labeled data for training, which is often impractical to obtain in real-world applications. In this paper, we introduce continual few-shot event detection (CFED), a more commonly encountered scenario when a substantial number of labeled samples are not accessible. The CFED task is challenging as it involves memorizing previous event types and learning new event types with few-shot samples. To mitigate these challenges, we propose a memory-based framework: Hierarchical Augmentation Networks (HANet). To memorize previous event types with limited memory, we incorporate prototypical augmentation into the memory set. For the issue of learning new event types in few-shot scenarios, we propose a contrastive augmentation module for token representations. Despite comparing with previous state-of-the-art methods, we also conduct comparisons with ChatGPT. Experiment results demonstrate that our method significantly outperforms all of these methods in multiple continual few-shot event detection tasks.

Deformable image registration plays a crucial role in medical imaging, aiding in disease diagnosis and image-guided interventions. Traditional iterative methods are slow, while deep learning (DL) accelerates solutions but faces usability and precision challenges. This study introduces a pyramid network with the enhanced motion decomposition Transformer (ModeTv2) operator, showcasing superior pairwise optimization (PO) akin to traditional methods. We re-implement ModeT operator with CUDA extensions to enhance its computational efficiency. We further propose RegHead module which refines deformation fields, improves the realism of deformation and reduces parameters. By adopting the PO, the proposed network balances accuracy, efficiency, and generalizability. Extensive experiments on two public brain MRI datasets and one abdominal CT dataset demonstrate the network's suitability for PO, providing a DL model with enhanced usability and interpretability. The code is publicly available.

We explore a spectral initialization method that plays a central role in contemporary research on signal estimation in nonconvex scenarios. In a noiseless phase retrieval framework, we precisely analyze the method's performance in the high-dimensional limit when sensing vectors follow a multivariate Gaussian distribution for two rotationally invariant models of the covariance matrix C. In the first model C is a projector on a lower dimensional space while in the second it is a Wishart matrix. Our analytical results extend the well-established case when C is the identity matrix. Our examination shows that the introduction of biased spatial directions leads to a substantial improvement in the spectral method's effectiveness, particularly when the number of measurements is less than the signal's dimension. This extension also consistently reveals a phase transition phenomenon dependent on the ratio between sample size and signal dimension. Surprisingly, both of these models share the same threshold value.

We develop a hierarchical LLM-task-motion planning and replanning framework to efficiently ground an abstracted human command into tangible Autonomous Underwater Vehicle (AUV) control through enhanced representations of the world. We also incorporate a holistic replanner to provide real-world feedback with all planners for robust AUV operation. While there has been extensive research in bridging the gap between LLMs and robotic missions, they are unable to guarantee success of AUV applications in the vast and unknown ocean environment. To tackle specific challenges in marine robotics, we design a hierarchical planner to compose executable motion plans, which achieves planning efficiency and solution quality by decomposing long-horizon missions into sub-tasks. At the same time, real-time data stream is obtained by a replanner to address environmental uncertainties during plan execution. Experiments validate that our proposed framework delivers successful AUV performance of long-duration missions through natural language piloting.

Instruction-tuned LLMs can respond to explicit queries formulated as prompts, which greatly facilitates interaction with human users. However, prompt-based approaches might not always be able to tap into the wealth of implicit knowledge acquired by LLMs during pre-training. This paper presents a comprehensive study of ways to evaluate semantic plausibility in LLMs. We compare base and instruction-tuned LLM performance on an English sentence plausibility task via (a) explicit prompting and (b) implicit estimation via direct readout of the probabilities models assign to strings. Experiment 1 shows that, across model architectures and plausibility datasets, (i) log likelihood ($\textit{LL}$) scores are the most reliable indicator of sentence plausibility, with zero-shot prompting yielding inconsistent and typically poor results; (ii) $\textit{LL}$-based performance is still inferior to human performance; (iii) instruction-tuned models have worse $\textit{LL}$-based performance than base models. In Experiment 2, we show that $\textit{LL}$ scores across models are modulated by context in the expected way, showing high performance on three metrics of context-sensitive plausibility and providing a direct match to explicit human plausibility judgments. Overall, $\textit{LL}$ estimates remain a more reliable measure of plausibility in LLMs than direct prompting.

The integration of ChatGPT as a supportive tool in education, notably in programming courses, addresses the unique challenges of programming education by providing assistance with debugging, code generation, and explanations. Despite existing research validating ChatGPT's effectiveness, its application in university-level programming education and a detailed understanding of student interactions and perspectives remain limited. This paper explores ChatGPT's impact on learning in a Python programming course tailored for first-year students over eight weeks. By analyzing responses from surveys, open-ended questions, and student-ChatGPT dialog data, we aim to provide a comprehensive view of ChatGPT's utility and identify both its advantages and limitations as perceived by students. Our study uncovers a generally positive reception toward ChatGPT and offers insights into its role in enhancing the programming education experience. These findings contribute to the broader discourse on AI's potential in education, suggesting paths for future research and application.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司