亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the online bipartite matching problem on $(k,d)$-bounded graphs, where each online vertex has at most $d$ neighbors, each offline vertex has at least $k$ neighbors, and $k\geq d\geq 2$. The model of $(k,d)$-bounded graphs is proposed by Naor and Wajc (EC 2015 and TEAC 2018) to model the online advertising applications in which offline advertisers are interested in a large number of ad slots, while each online ad slot is interesting to a small number of advertisers. They proposed deterministic and randomized algorithms with a competitive ratio of $1 - (1-1/d)^k$ for the problem, and show that the competitive ratio is optimal for deterministic algorithms. They also raised the open questions of whether strictly better competitive ratios can be achieved using randomized algorithms, for both the adversarial and stochastic arrival models. In this paper we answer both of their open problems affirmatively. For the adversarial arrival model, we propose a randomized algorithm with competitive ratio $1 - (1-1/d)^k + \Omega(d^{-4}\cdot e^{-\frac{k}{d}})$ for all $k\geq d\geq 2$. We also consider the stochastic model and show that even better competitive ratios can be achieved. We show that for all $k\geq d\geq 2$, the competitive ratio is always at least $0.8237$. We further consider the $b$-matching problem when each offline vertex can be matched at most $b$ times, and provide several competitive ratio lower bounds for the adversarial and stochastic model.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 泛函 · 控制器 · Analysis · Frobenius 范數 ·
2024 年 1 月 24 日

In this paper, a comparison analysis between geometric impedance controls (GICs) derived from two different potential functions on SE(3) for robotic manipulators is presented. The first potential function is defined on the Lie group, utilizing the Frobenius norm of the configuration error matrix. The second potential function is defined utilizing the Lie algebra, i.e., log-map of the configuration error. Using a differential geometric approach, the detailed derivation of the distance metric and potential function on SE(3) is introduced. The GIC laws are respectively derived from the two potential functions, followed by extensive comparison analyses. In the qualitative analysis, the properties of the error function and control laws are analyzed, while the performances of the controllers are quantitatively compared using numerical simulation.

We provide a framework to analyze the convergence of discretized kinetic Langevin dynamics for $M$-$\nabla$Lipschitz, $m$-convex potentials. Our approach gives convergence rates of $\mathcal{O}(m/M)$, with explicit stepsize restrictions, which are of the same order as the stability threshold for Gaussian targets and are valid for a large interval of the friction parameter. We apply this methodology to various integration schemes which are popular in the molecular dynamics and machine learning communities. Finally, we introduce the property "$\gamma$-limit convergent" (GLC) to characterize underdamped Langevin schemes that converge to overdamped dynamics in the high-friction limit and which have stepsize restrictions that are independent of the friction parameter; we show that this property is not generic by exhibiting methods from both the class and its complement. We further provide asymptotic bias estimates for the BAOAB scheme, which remain accurate in the high-friction limit by comparison to a modified stochastic dynamics which preserves the invariant measure.

The task of rumour verification in social media concerns assessing the veracity of a claim on the basis of conversation threads that result from it. While previous work has focused on predicting a veracity label, here we reformulate the task to generate model-centric, free-text explanations of a rumour's veracity. We follow an unsupervised approach by first utilising post-hoc explainability methods to score the most important posts within a thread and then we use these posts to generate informative explanatory summaries by employing template-guided summarisation. To evaluate the informativeness of the explanatory summaries, we exploit the few-shot learning capabilities of a large language model (LLM). Our experiments show that LLMs can have similar agreement to humans in evaluating summaries. Importantly, we show that explanatory abstractive summaries are more informative and better reflect the predicted rumour veracity than just using the highest ranking posts in the thread.

A bottleneck in modern active automata learning is to test whether a hypothesized Mealy machine correctly describes the system under learning. The search space for possible counterexamples is given by so-called test suites, consisting of input sequences that have to be checked to decide whether a counterexample exists. This paper shows that significantly smaller test suites suffice under reasonable assumptions on the structure of the black box. These smaller test suites help to refute false hypotheses during active automata learning, even when the assumptions do not hold. We combine multiple test suites using a multi-armed bandit setup that adaptively selects a test suite. An extensive empirical evaluation shows the efficacy of our approach. For small to medium-sized models, the performance gain is limited. However, the approach allows learning models from large, industrial case studies that were beyond the reach of known methods.

We propose policy gradient algorithms for robust infinite-horizon Markov decision processes (MDPs) with non-rectangular uncertainty sets, thereby addressing an open challenge in the robust MDP literature. Indeed, uncertainty sets that display statistical optimality properties and make optimal use of limited data often fail to be rectangular. Unfortunately, the corresponding robust MDPs cannot be solved with dynamic programming techniques and are in fact provably intractable. We first present a randomized projected Langevin dynamics algorithm that solves the robust policy evaluation problem to global optimality but is inefficient. We also propose a deterministic policy gradient method that is efficient but solves the robust policy evaluation problem only approximately, and we prove that the approximation error scales with a new measure of non-rectangularity of the uncertainty set. Finally, we describe an actor-critic algorithm that finds an $\epsilon$-optimal solution for the robust policy improvement problem in $\mathcal{O}(1/\epsilon^4)$ iterations. We thus present the first complete solution scheme for robust MDPs with non-rectangular uncertainty sets offering global optimality guarantees. Numerical experiments show that our algorithms compare favorably against state-of-the-art methods.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司