亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work proposes a novel approach that uses a semantic segmentation mask to obtain a 2D spatial layout of the segmentation-categories across the scene, designated by segmentation-based semantic features (SSFs). These features represent, per segmentation-category, the pixel count, as well as the 2D average position and respective standard deviation values. Moreover, a two-branch network, GS2F2App, that exploits CNN-based global features extracted from RGB images and the segmentation-based features extracted from the proposed SSFs, is also proposed. GS2F2App was evaluated in two indoor scene benchmark datasets: the SUN RGB-D and the NYU Depth V2, achieving state-of-the-art results on both datasets.

相關內容

特征提取是計算機視覺和圖像處理中的一個概念。它指的是使用計算機提取圖像信息,決定每個圖像的點是否屬于一個圖像特征。 特征被檢測后它可以從圖像中被抽取出來。這個過程可能需要許多圖像處理的計算機。其結果被稱為特征描述或者特征向量。

The objective of this paper is to provide an introduction to the principles of Bayesian joint modeling of longitudinal measurements and time-to-event outcomes, as well as model implementation using the BUGS language syntax. This syntax can be executed directly using OpenBUGS or by utilizing convenient functions to invoke OpenBUGS and JAGS from R software. In this paper, all details of joint models are provided, ranging from simple to more advanced models. The presentation started with the joint modeling of a Gaussian longitudinal marker and time-to-event outcome. The implementation of the Bayesian paradigm of the model is reviewed. The strategies for simulating data from the JM are also discussed. A proportional hazard model with various forms of baseline hazards, along with the discussion of all possible association structures between the two sub-models are taken into consideration. The paper covers joint models with multivariate longitudinal measurements, zero-inflated longitudinal measurements, competing risks, and time-to-event with cure fraction. The models are illustrated by the analyses of several real data sets. All simulated and real data and code are available at \url{//github.com/tbaghfalaki/JM-with-BUGS-and-JAGS}.

Multiple extended target tracking (ETT) has gained increasing attention due to the development of high-precision LiDAR and radar sensors in automotive applications. For LiDAR point cloud-based vehicle tracking, this paper presents a probabilistic measurement-region association (PMRA) ETT model, which can describe the complex measurement distribution by partitioning the target extent into different regions. The PMRA model overcomes the drawbacks of previous data-region association (DRA) models by eliminating the approximation error of constrained estimation and using continuous integrals to more reliably calculate the association probabilities. Furthermore, the PMRA model is integrated with the Poisson multi-Bernoulli mixture (PMBM) filter for tracking multiple vehicles. Simulation results illustrate the superior estimation accuracy of the proposed PMRA-PMBM filter in terms of both positions and extents of the vehicles comparing with PMBM filters using the gamma Gaussian inverse Wishart and DRA implementations.

In several real-world scenarios like autonomous navigation and mobility, to obtain a better visual understanding of the surroundings, image captioning and object detection play a crucial role. This work introduces a novel multitask learning framework that combines image captioning and object detection into a joint model. We propose TICOD, Transformer-based Image Captioning and Object detection model for jointly training both tasks by combining the losses obtained from image captioning and object detection networks. By leveraging joint training, the model benefits from the complementary information shared between the two tasks, leading to improved performance for image captioning. Our approach utilizes a transformer-based architecture that enables end-to-end network integration for image captioning and object detection and performs both tasks jointly. We evaluate the effectiveness of our approach through comprehensive experiments on the MS-COCO dataset. Our model outperforms the baselines from image captioning literature by achieving a 3.65% improvement in BERTScore.

Previous works in prompt engineering for large language models have introduced different gradient-free probability-based prompt selection methods that aim to choose the optimal prompt among the candidates for a given task but have failed to provide a comprehensive and fair comparison between each other. In this paper, we propose a unified framework to interpret and evaluate the existing probability-based prompt selection methods by performing extensive experiments on 13 common and diverse NLP tasks. We find that each of the existing methods can be interpreted as some variant of the method that maximizes mutual information between the input and the predicted output (MI). Utilizing this finding, we develop several other combinatorial variants of MI and increase the effectiveness of the oracle prompt selection method from 87.79% to 94.98%, measured as the ratio of the performance of the selected prompt to that of the optimal oracle prompt. Furthermore, considering that all the methods rely on the output probability distribution of the model that might be biased, we propose a novel calibration method called Calibration by Marginalization (CBM) that is orthogonal to the existing methods and helps increase the prompt selection effectiveness of the best method to 96.85%, achieving 99.44% of the oracle prompt F1 without calibration.

The ability of Large Language Models (LLMs) to critique and refine their reasoning is crucial for their application in evaluation, feedback provision, and self-improvement. This paper introduces CriticBench, a comprehensive benchmark designed to assess LLMs' abilities to critique and rectify their reasoning across a variety of tasks. CriticBench encompasses five reasoning domains: mathematical, commonsense, symbolic, coding, and algorithmic. It compiles 15 datasets and incorporates responses from three LLM families. Utilizing CriticBench, we evaluate and dissect the performance of 17 LLMs in generation, critique, and correction reasoning, i.e., GQC reasoning. Our findings reveal: (1) a linear relationship in GQC capabilities, with critique-focused training markedly enhancing performance; (2) a task-dependent variation in correction effectiveness, with logic-oriented tasks being more amenable to correction; (3) GQC knowledge inconsistencies that decrease as model size increases; and (4) an intriguing inter-model critiquing dynamic, where stronger models are better at critiquing weaker ones, while weaker models can surprisingly surpass stronger ones in their self-critique. We hope these insights into the nuanced critique-correct reasoning of LLMs will foster further research in LLM critique and self-improvement.

Large language models (LLMs) have achieved unprecedented performance in various applications, yet their evaluation remains a critical issue. Existing hallucination benchmarks are either static or lack adjustable complexity for thorough analysis. We contend that utilizing existing relational databases is a promising approach for constructing benchmarks due to their accurate knowledge description via functional dependencies. We propose ERBench to automatically convert any relational database into a benchmark based on the entity-relationship (ER) model. Our key idea is to construct questions using the database schema, records, and functional dependencies such that they can be automatically verified. In addition, we use foreign key constraints to join relations and construct multihop questions, which can be arbitrarily complex and used to debug the intermediate answers of LLMs. Finally, ERBench supports continuous evaluation, multimodal questions, and various prompt engineering techniques. In our experiments, we construct an LLM benchmark using databases of multiple domains and make an extensive comparison of contemporary LLMs. We observe that better LLMs like GPT-4 can handle a larger variety of question types, but are by no means perfect. Also, correct answers do not necessarily imply correct rationales, which is an important evaluation that ERBench does better than other benchmarks for various question types. Code is available at https: //github.com/DILAB-KAIST/ERBench.

To retrieve more relevant, appropriate and useful documents given a query, finding clues about that query through the text is crucial. Recent deep learning models regard the task as a term-level matching problem, which seeks exact or similar query patterns in the document. However, we argue that they are inherently based on local interactions and do not generalise to ubiquitous, non-consecutive contextual relationships.In this work, we propose a novel relevance matching model based on graph neural networks to leverage the document-level word relationships for ad-hoc retrieval. In addition to the local interactions, we explicitly incorporate all contexts of a term through the graph-of-word text format. Matching patterns can be revealed accordingly to provide a more accurate relevance score. Our approach significantly outperforms strong baselines on two ad-hoc benchmarks. We also experimentally compare our model with BERT and show our ad-vantages on long documents.

Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.

北京阿比特科技有限公司