亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Music-based reminiscence has the potential to positively impact the psychological well-being of older adults. However, the aging process and physiological changes, such as memory decline and limited verbal communication, may impede the ability of older adults to recall their memories and life experiences. Given the advanced capabilities of generative artificial intelligence (AI) systems, such as generated conversations and images, and their potential to facilitate the reminiscing process, this study aims to explore the design of generative AI to support music-based reminiscence in older adults. This study follows a user-centered design approach incorporating various stages, including detailed interviews with two social workers and two design workshops (involving ten older adults). Our work contributes to an in-depth understanding of older adults' attitudes toward utilizing generative AI for supporting music-based reminiscence and identifies concrete design considerations for the future design of generative AI to enhance the reminiscence experience of older adults.

相關內容

生(sheng)(sheng)成(cheng)(cheng)(cheng)式(shi)(shi)(shi)人(ren)工智能(neng)是利用(yong)復(fu)雜的(de)(de)(de)(de)(de)算法、模型和(he)規(gui)則,從(cong)大規(gui)模數據集中學習,以(yi)創造新(xin)的(de)(de)(de)(de)(de)原創內(nei)容的(de)(de)(de)(de)(de)人(ren)工智能(neng)技(ji)(ji)(ji)術(shu)(shu)。這(zhe)項技(ji)(ji)(ji)術(shu)(shu)能(neng)夠創造文本(ben)、圖(tu)片、聲音(yin)、視頻和(he)代(dai)碼等多種類型的(de)(de)(de)(de)(de)內(nei)容,全面超越了傳(chuan)統軟件(jian)的(de)(de)(de)(de)(de)數據處理(li)和(he)分析能(neng)力。2022年末,OpenAI推出的(de)(de)(de)(de)(de)ChatGPT標(biao)志著這(zhe)一技(ji)(ji)(ji)術(shu)(shu)在文本(ben)生(sheng)(sheng)成(cheng)(cheng)(cheng)領域(yu)取得了顯(xian)(xian)著進(jin)展(zhan),2023年被稱為(wei)生(sheng)(sheng)成(cheng)(cheng)(cheng)式(shi)(shi)(shi)人(ren)工智能(neng)的(de)(de)(de)(de)(de)突(tu)破之年。這(zhe)項技(ji)(ji)(ji)術(shu)(shu)從(cong)單一的(de)(de)(de)(de)(de)語言生(sheng)(sheng)成(cheng)(cheng)(cheng)逐步向(xiang)多模態(tai)、具(ju)身化快速(su)(su)發(fa)展(zhan)。在圖(tu)像生(sheng)(sheng)成(cheng)(cheng)(cheng)方面,生(sheng)(sheng)成(cheng)(cheng)(cheng)系(xi)統在解釋(shi)提(ti)示和(he)生(sheng)(sheng)成(cheng)(cheng)(cheng)逼真輸出方面取得了顯(xian)(xian)著的(de)(de)(de)(de)(de)進(jin)步。同時,視頻和(he)音(yin)頻的(de)(de)(de)(de)(de)生(sheng)(sheng)成(cheng)(cheng)(cheng)技(ji)(ji)(ji)術(shu)(shu)也在迅速(su)(su)發(fa)展(zhan),這(zhe)為(wei)虛(xu)擬(ni)現實和(he)元宇宙的(de)(de)(de)(de)(de)實現提(ti)供(gong)了新(xin)的(de)(de)(de)(de)(de)途(tu)徑。生(sheng)(sheng)成(cheng)(cheng)(cheng)式(shi)(shi)(shi)人(ren)工智能(neng)技(ji)(ji)(ji)術(shu)(shu)在各行業、各領域(yu)都(dou)具(ju)有廣(guang)泛的(de)(de)(de)(de)(de)應用(yong)前(qian)景(jing)。

Prostate cancer is a commonly diagnosed cancerous disease among men world-wide. Even with modern technology such as multi-parametric magnetic resonance tomography and guided biopsies, the process for diagnosing prostate cancer remains time consuming and requires highly trained professionals. In this paper, different convolutional neural networks (CNN) are evaluated on their abilities to reliably classify whether an MRI sequence contains malignant lesions. Implementations of a ResNet, a ConvNet and a ConvNeXt for 3D image data are trained and evaluated. The models are trained using different data augmentation techniques, learning rates, and optimizers. The data is taken from a private dataset, provided by Cantonal Hospital Aarau. The best result was achieved by a ResNet3D, yielding an average precision score of 0.4583 and AUC ROC score of 0.6214.

Over the years, various approaches have been employed to enhance the productivity of knowledge workers, from addressing psychological well-being to the development of personal knowledge assistants. A significant challenge in this research area has been the absence of a comprehensive, publicly accessible dataset that mirrors real-world knowledge work. Although a handful of datasets exist, many are restricted in access or lack vital information dimensions, complicating meaningful comparison and benchmarking in the domain. This paper presents RLKWiC, a novel dataset of Real-Life Knowledge Work in Context, derived from monitoring the computer interactions of eight participants over a span of two months. As the first publicly available dataset offering a wealth of essential information dimensions (such as explicated contexts, textual contents, and semantics), RLKWiC seeks to address the research gap in the personal information management domain, providing valuable insights for modeling user behavior.

Facial expression-based human emotion recognition is a critical research area in psychology and medicine. State-of-the-art classification performance is only reached by end-to-end trained neural networks. Nevertheless, such black-box models lack transparency in their decision-making processes, prompting efforts to ascertain the rules that underlie classifiers' decisions. Analyzing single inputs alone fails to expose systematic learned biases. These biases can be characterized as facial properties summarizing abstract information like age or medical conditions. Therefore, understanding a model's prediction behavior requires an analysis rooted in causality along such selected properties. We demonstrate that up to 91.25% of classifier output behavior changes are statistically significant concerning basic properties. Among those are age, gender, and facial symmetry. Furthermore, the medical usage of surface electromyography significantly influences emotion prediction. We introduce a workflow to evaluate explicit properties and their impact. These insights might help medical professionals select and apply classifiers regarding their specialized data and properties.

Accelerated computing is widely used in high-performance computing. Therefore, it is crucial to experiment and discover how to better utilize GPUGPUs latest generations on relevant applications. In this paper, we present results and share insights about highly tuned stencil-based kernels for NVIDIA Ampere (A100) and Hopper (GH200) architectures. Performance results yield useful insights into the behavior of this type of algorithms for these new accelerators. This knowledge can be leveraged by many scientific applications which involve stencils computations. Further, evaluation of three different programming models: CUDA, OpenACC, and OpenMP target offloading is conducted on aforementioned accelerators. We extensively study the performance and portability of various kernels under each programming model and provide corresponding optimization recommendations. Furthermore, we compare the performance of different programming models on the mentioned architectures. Up to 58% performance improvement was achieved against the previous GPGPU's architecture generation for an highly optimized kernel of the same class, and up to 42% for all classes. In terms of programming models, and keeping portability in mind, optimized OpenACC implementation outperforms OpenMP implementation by 33%. If portability is not a factor, our best tuned CUDA implementation outperforms the optimized OpenACC one by 2.1x.

We investigate the role of uncertainty in decision-making problems with natural language as input. For such tasks, using Large Language Models as agents has become the norm. However, none of the recent approaches employ any additional phase for estimating the uncertainty the agent has about the world during the decision-making task. We focus on a fundamental decision-making framework with natural language as input, which is the one of contextual bandits, where the context information consists of text. As a representative of the approaches with no uncertainty estimation, we consider an LLM bandit with a greedy policy, which picks the action corresponding to the largest predicted reward. We compare this baseline to LLM bandits that make active use of uncertainty estimation by integrating the uncertainty in a Thompson Sampling policy. We employ different techniques for uncertainty estimation, such as Laplace Approximation, Dropout, and Epinets. We empirically show on real-world data that the greedy policy performs worse than the Thompson Sampling policies. These findings suggest that, while overlooked in the LLM literature, uncertainty plays a fundamental role in bandit tasks with LLMs.

In the era of generative artificial intelligence and the Internet of Things, while there is explosive growth in the volume of data and the associated need for processing, analysis, and storage, several new challenges are faced in identifying spurious and fake information and protecting the privacy of sensitive data. This has led to an increasing demand for more robust and resilient schemes for authentication, integrity protection, encryption, non-repudiation, and privacy-preservation of data. The chapters in this book present some of the state-of-the-art research works in the field of cryptography and security in computing and communications.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司