Synthetic data is essential for assessing clustering techniques, complementing and extending real data, and allowing for more complete coverage of a given problem's space. In turn, synthetic data generators have the potential of creating vast amounts of data -- a crucial activity when real-world data is at premium -- while providing a well-understood generation procedure and an interpretable instrument for methodically investigating cluster analysis algorithms. Here, we present Clugen, a modular procedure for synthetic data generation, capable of creating multidimensional clusters supported by line segments using arbitrary distributions. Clugen is open source, comprehensively unit tested and documented, and is available for the Python, R, Julia, and MATLAB/Octave ecosystems. We demonstrate that our proposal can produce rich and varied results in various dimensions, is fit for use in the assessment of clustering algorithms, and has the potential to be a widely used framework in diverse clustering-related research tasks.
Close and precise placement of irregularly shaped objects requires a skilled robotic system. Particularly challenging is the manipulation of objects that have sensitive top surfaces and a fixed set of neighbors. To avoid damaging the surface, they have to be grasped from the side, and during placement, their neighbor relations have to be maintained. In this work, we train a reinforcement learning agent that generates smooth end-effector motions to place objects as close as possible next to each other. During the placement, our agent considers neighbor constraints defined in a given layout of the objects while trying to avoid collisions. Our approach learns to place compact object assemblies without the need for predefined spacing between objects as required by traditional methods. We thoroughly evaluated our approach using a two-finger gripper mounted to a robotic arm with six degrees of freedom. The results show that our agent outperforms two baseline approaches in terms of object assembly compactness, thereby reducing the needed space to place the objects according to the given neighbor constraints. On average, our approach reduces the distances between all placed objects by at least 60%, with fewer collisions at the same compactness compared to both baselines.
There is a belief that learning to compress well will lead to intelligence. Recently, language modeling has been shown to be equivalent to compression, which offers a compelling rationale for the success of large language models (LLMs): the development of more advanced language models is essentially enhancing compression which facilitates intelligence. Despite such appealing discussions, little empirical evidence is present for the interplay between compression and intelligence. In this work, we examine their relationship in the context of LLMs, treating LLMs as data compressors. Given the abstract concept of "intelligence", we adopt the average downstream benchmark scores as a surrogate, specifically targeting intelligence related to knowledge and commonsense, coding, and mathematical reasoning. Across 12 benchmarks, our study brings together 30 public LLMs that originate from diverse organizations. Remarkably, we find that LLMs' intelligence -- reflected by average benchmark scores -- almost linearly correlates with their ability to compress external text corpora. These results provide concrete evidence supporting the belief that superior compression indicates greater intelligence. Furthermore, our findings suggest that compression efficiency, as an unsupervised metric derived from raw text corpora, serves as a reliable evaluation measure that is linearly associated with the model capabilities. We open-source our compression datasets as well as our data collection pipelines to facilitate future researchers to assess compression properly.
Knowledge graphs are useful tools to organize, recommend and sort data. Hierarchies in knowledge graphs provide significant benefit in improving understanding and compartmentalization of the data within a knowledge graph. This work leverages large language models to generate and augment hierarchies in an existing knowledge graph. For small (<100,000 node) domain-specific KGs, we find that a combination of few-shot prompting with one-shot generation works well, while larger KG may require cyclical generation. We present techniques for augmenting hierarchies, which led to coverage increase by 98% for intents and 99% for colors in our knowledge graph.
Using knowledge graphs to assist deep learning models in making recommendation decisions has recently been proven to effectively improve the model's interpretability and accuracy. This paper introduces an end-to-end deep learning model, named RKGCN, which dynamically analyses each user's preferences and makes a recommendation of suitable items. It combines knowledge graphs on both the item side and user side to enrich their representations to maximize the utilization of the abundant information in knowledge graphs. RKGCN is able to offer more personalized and relevant recommendations in three different scenarios. The experimental results show the superior effectiveness of our model over 5 baseline models on three real-world datasets including movies, books, and music.
Parallel architectures are continually increasing in performance and scale, while underlying algorithmic infrastructure often fail to take full advantage of available compute power. Within the context of MPI, irregular communication patterns create bottlenecks in parallel applications. One common bottleneck is the sparse dynamic data exchange, often required when forming communication patterns within applications. There are a large variety of approaches for these dynamic exchanges, with optimizations implemented directly in parallel applications. This paper proposes a novel API within an MPI extension library, allowing for applications to utilize the variety of provided optimizations for sparse dynamic data exchange methods. Further, the paper presents novel locality-aware sparse dynamic data exchange algorithms. Finally, performance results show significant speedups up to 20x with the novel locality-aware algorithms.
Emotion detection in textual data has received growing interest in recent years, as it is pivotal for developing empathetic human-computer interaction systems. This paper introduces a method for categorizing emotions from text, which acknowledges and differentiates between the diversified similarities and distinctions of various emotions. Initially, we establish a baseline by training a transformer-based model for standard emotion classification, achieving state-of-the-art performance. We argue that not all misclassifications are of the same importance, as there are perceptual similarities among emotional classes. We thus redefine the emotion labeling problem by shifting it from a traditional classification model to an ordinal classification one, where discrete emotions are arranged in a sequential order according to their valence levels. Finally, we propose a method that performs ordinal classification in the two-dimensional emotion space, considering both valence and arousal scales. The results show that our approach not only preserves high accuracy in emotion prediction but also significantly reduces the magnitude of errors in cases of misclassification.
Multiplicative linear logic is a very well studied formal system, and most such studies are concerned with the one-sided sequent calculus. In this paper we look in detail at existing translations between a deep inference system and the standard sequent calculus one, provide a simplified translation, and provide a formal proof that a standard approach to modelling is indeed invariant to all these translations. En route we establish a necessary condition for provable sequents related to the number of pars and tensors in a formula that seems to be missing from the literature.
Radar systems typically employ well-designed deterministic signals for target sensing, while integrated sensing and communications (ISAC) systems have to adopt random signals to convey useful information. This paper analyzes the sensing and ISAC performance relying on random signaling in a multi-antenna system. Towards this end, we define a new sensing performance metric, namely, ergodic linear minimum mean square error (ELMMSE), which characterizes the estimation error averaged over random ISAC signals. Then, we investigate a data-dependent precoding (DDP) scheme to minimize the ELMMSE in sensing-only scenarios, which attains the optimized performance at the cost of high implementation overhead. To reduce the cost, we present an alternative data-independent precoding (DIP) scheme by stochastic gradient projection (SGP). Moreover, we shed light on the optimal structures of both sensing-only DDP and DIP precoders. As a further step, we extend the proposed DDP and DIP approaches to ISAC scenarios, which are solved via a tailored penalty-based alternating optimization algorithm. Our numerical results demonstrate that the proposed DDP and DIP methods achieve substantial performance gains over conventional ISAC signaling schemes that treat the signal sample covariance matrix as deterministic, which proves that random ISAC signals deserve dedicated precoding designs.
Counterfactual image generation is pivotal for understanding the causal relations of variables, with applications in interpretability and generation of unbiased synthetic data. However, evaluating image generation is a long-standing challenge in itself. The need to evaluate counterfactual generation compounds on this challenge, precisely because counterfactuals, by definition, are hypothetical scenarios without observable ground truths. In this paper, we present a novel comprehensive framework aimed at benchmarking counterfactual image generation methods. We incorporate metrics that focus on evaluating diverse aspects of counterfactuals, such as composition, effectiveness, minimality of interventions, and image realism. We assess the performance of three distinct conditional image generation model types, based on the Structural Causal Model paradigm. Our work is accompanied by a user-friendly Python package which allows to further evaluate and benchmark existing and future counterfactual image generation methods. Our framework is extendable to additional SCM and other causal methods, generative models, and datasets.
The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.