亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Discrete empirical interpolation method (DEIM) estimates a function from its incomplete pointwise measurements. Unfortunately, DEIM suffers large interpolation errors when few measurements are available. Here, we introduce Sparse DEIM (S-DEIM) for accurately estimating a function even when very few measurements are available. To this end, S-DEIM leverages a kernel vector which has been neglected in previous DEIM-based methods. We derive theoretical error estimates for S-DEIM, showing its relatively small error when an optimal kernel vector is used. When the function is generated by a continuous-time dynamical system, we propose a data assimilation algorithm which approximates the optimal kernel vector using observational time series. We prove that, under certain conditions, data assimilated S-DEIM converges exponentially fast towards the true state. We demonstrate the efficacy of our method on two numerical examples.

相關內容

Deciphering visual content from functional Magnetic Resonance Imaging (fMRI) helps illuminate the human vision system. However, the scarcity of fMRI data and noise hamper brain decoding model performance. Previous approaches primarily employ subject-specific models, sensitive to training sample size. In this paper, we explore a straightforward but overlooked solution to address data scarcity. We propose shallow subject-specific adapters to map cross-subject fMRI data into unified representations. Subsequently, a shared deeper decoding model decodes cross-subject features into the target feature space. During training, we leverage both visual and textual supervision for multi-modal brain decoding. Our model integrates a high-level perception decoding pipeline and a pixel-wise reconstruction pipeline guided by high-level perceptions, simulating bottom-up and top-down processes in neuroscience. Empirical experiments demonstrate robust neural representation learning across subjects for both pipelines. Moreover, merging high-level and low-level information improves both low-level and high-level reconstruction metrics. Additionally, we successfully transfer learned general knowledge to new subjects by training new adapters with limited training data. Compared to previous state-of-the-art methods, notably pre-training-based methods (Mind-Vis and fMRI-PTE), our approach achieves comparable or superior results across diverse tasks, showing promise as an alternative method for cross-subject fMRI data pre-training. Our code and pre-trained weights will be publicly released at //github.com/YulongBonjour/See_Through_Their_Minds.

Model Predictive Control (MPC) has exhibited remarkable capabilities in optimizing objectives and meeting constraints. However, the substantial computational burden associated with solving the Optimal Control Problem (OCP) at each triggering instant introduces significant delays between state sampling and control application. These delays limit the practicality of MPC in resource-constrained systems when engaging in complex tasks. The intuition to address this issue in this paper is that by predicting the successor state, the controller can solve the OCP one time step ahead of time thus avoiding the delay of the next action. To this end, we compute deviations between real and nominal system states, predicting forthcoming real states as initial conditions for the imminent OCP solution. Anticipatory computation stores optimal control based on current nominal states, thus mitigating the delay effects. Additionally, we establish an upper bound for linearization error, effectively linearizing the nonlinear system, reducing OCP complexity, and enhancing response speed. We provide empirical validation through two numerical simulations and corresponding real-world robot tasks, demonstrating significant performance improvements and augmented response speed (up to $90\%$) resulting from the seamless integration of our proposed approach compared to conventional time-triggered MPC strategies.

Recent studies have highlighted the promising application of NeRF in autonomous driving contexts. However, the complexity of outdoor environments, combined with the restricted viewpoints in driving scenarios, complicates the task of precisely reconstructing scene geometry. Such challenges often lead to diminished quality in reconstructions and extended durations for both training and rendering. To tackle these challenges, we present Lightning NeRF. It uses an efficient hybrid scene representation that effectively utilizes the geometry prior from LiDAR in autonomous driving scenarios. Lightning NeRF significantly improves the novel view synthesis performance of NeRF and reduces computational overheads. Through evaluations on real-world datasets, such as KITTI-360, Argoverse2, and our private dataset, we demonstrate that our approach not only exceeds the current state-of-the-art in novel view synthesis quality but also achieves a five-fold increase in training speed and a ten-fold improvement in rendering speed. Codes are available at //github.com/VISION-SJTU/Lightning-NeRF .

Large Language Models (LLMs) demonstrate exceptional performance in textual understanding and tabular reasoning tasks. However, their ability to comprehend and analyze hybrid text, containing textual and tabular data, remains underexplored. In this research, we specialize in harnessing the potential of LLMs to comprehend critical information from financial reports, which are hybrid long-documents. We propose an Automated Financial Information Extraction (AFIE) framework that enhances LLMs' ability to comprehend and extract information from financial reports. To evaluate AFIE, we develop a Financial Reports Numerical Extraction (FINE) dataset and conduct an extensive experimental analysis. Our framework is effectively validated on GPT-3.5 and GPT-4, yielding average accuracy increases of 53.94% and 33.77%, respectively, compared to a naive method. These results suggest that the AFIE framework offers accuracy for automated numerical extraction from complex, hybrid documents.

Several tools have recently been proposed for assisting researchers during various stages of the research life-cycle. However, these primarily concentrate on tasks such as retrieving and recommending relevant literature, reviewing and critiquing the draft, and writing of research manuscripts. Our investigation reveals a significant gap in availability of tools specifically designed to assist researchers during the challenging ideation phase of the research life-cycle. To aid with research ideation, we propose `Acceleron', a research accelerator for different phases of the research life cycle, and which is specially designed to aid the ideation process. Acceleron guides researchers through the formulation of a comprehensive research proposal, encompassing a novel research problem. The proposals motivation is validated for novelty by identifying gaps in the existing literature and suggesting a plausible list of techniques to solve the proposed problem. We leverage the reasoning and domain-specific skills of Large Language Models (LLMs) to create an agent-based architecture incorporating colleague and mentor personas for LLMs. The LLM agents emulate the ideation process undertaken by researchers, engaging researchers in an interactive fashion to aid in the development of the research proposal. Notably, our tool addresses challenges inherent in LLMs, such as hallucinations, implements a two-stage aspect-based retrieval to manage precision-recall trade-offs, and tackles issues of unanswerability. As evaluation, we illustrate the execution of our motivation validation and method synthesis workflows on proposals from the ML and NLP domain, given by 3 distinct researchers. Our observations and evaluations provided by the researchers illustrate the efficacy of the tool in terms of assisting researchers with appropriate inputs at distinct stages and thus leading to improved time efficiency.

Understanding causal mechanisms is essential for explaining and generalizing empirical phenomena. Causal mediation analysis offers statistical techniques to quantify mediation effects. However, existing methods typically require strong identification assumptions or sophisticated research designs. We develop a new identification strategy that simplifies these assumptions, enabling the simultaneous estimation of causal and mediation effects. The strategy is based on a novel decomposition of total treatment effects, which transforms the challenging mediation problem into a simple linear regression problem. The new method establishes a new link between causal mediation and causal moderation. We discuss several research designs and estimators to increase the usability of our identification strategy for a variety of empirical studies. We demonstrate the application of our method by estimating the causal mediation effect in experiments concerning common pool resource governance and voting information. Additionally, we have created statistical software to facilitate the implementation of our method.

Graph neural networks (GNNs) have been a hot spot of recent research and are widely utilized in diverse applications. However, with the use of huger data and deeper models, an urgent demand is unsurprisingly made to accelerate GNNs for more efficient execution. In this paper, we provide a comprehensive survey on acceleration methods for GNNs from an algorithmic perspective. We first present a new taxonomy to classify existing acceleration methods into five categories. Based on the classification, we systematically discuss these methods and highlight their correlations. Next, we provide comparisons from aspects of the efficiency and characteristics of these methods. Finally, we suggest some promising prospects for future research.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Domain generalization (DG), i.e., out-of-distribution generalization, has attracted increased interests in recent years. Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain. For years, great progress has been achieved. This paper presents the first review for recent advances in domain generalization. First, we provide a formal definition of domain generalization and discuss several related fields. Next, we thoroughly review the theories related to domain generalization and carefully analyze the theory behind generalization. Then, we categorize recent algorithms into three classes and present them in detail: data manipulation, representation learning, and learning strategy, each of which contains several popular algorithms. Third, we introduce the commonly used datasets and applications. Finally, we summarize existing literature and present some potential research topics for the future.

Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoder-decoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (ie, without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first (44.42% mIoU) position in the highly competitive ADE20K test server leaderboard.

北京阿比特科技有限公司