Multi-objective reinforcement learning (MORL) is increasingly relevant due to its resemblance to real-world scenarios requiring trade-offs between multiple objectives. Catering to diverse user preferences, traditional reinforcement learning faces amplified challenges in MORL. To address the difficulty of training policies from scratch in MORL, we introduce demonstration-guided multi-objective reinforcement learning (DG-MORL). This novel approach utilizes prior demonstrations, aligns them with user preferences via corner weight support, and incorporates a self-evolving mechanism to refine suboptimal demonstrations. Our empirical studies demonstrate DG-MORL's superiority over existing MORL algorithms, establishing its robustness and efficacy, particularly under challenging conditions. We also provide an upper bound of the algorithm's sample complexity.
In-context learning (ICL) capabilities is becoming increasingly appealing towards building general intelligence. Taking this concept one step further, we draw a parallel to humans and many animals, who inherit primarily learning capabilities but refine their memory and acquire diverse skills and knowledge through extensive lifelong experiences. This parallel inspires our approach to general purpose in-context learning (GPICL). This paper introduces two lightweight but insightful benchmarks specifically crafted to train and evaluate GPICL functionalities. Each benchmark encompasses a wide range of diverse tasks characterized by generation and interaction, minimal transferable knowledge, and long-term dependency. These features present significant challenges for models that primarily rely on context or interactions to enhance their proficiency. We hope that these benchmarks will not only advance research in GPICL but also contribute significantly to the broader field of general intelligence.
Few-shot class-incremental learning (FSCIL) is proposed to continually learn from novel classes with only a few samples after the (pre-)training on base classes with sufficient data. However, this remains a challenge. In contrast, humans can easily recognize novel classes with a few samples. Cognitive science demonstrates that an important component of such human capability is compositional learning. This involves identifying visual primitives from learned knowledge and then composing new concepts using these transferred primitives, making incremental learning both effective and interpretable. To imitate human compositional learning, we propose a cognitive-inspired method for the FSCIL task. We define and build a compositional model based on set similarities, and then equip it with a primitive composition module and a primitive reuse module. In the primitive composition module, we propose to utilize the Centered Kernel Alignment (CKA) similarity to approximate the similarity between primitive sets, allowing the training and evaluation based on primitive compositions. In the primitive reuse module, we enhance primitive reusability by classifying inputs based on primitives replaced with the closest primitives from other classes. Experiments on three datasets validate our method, showing it outperforms current state-of-the-art methods with improved interpretability. Our code is available at //github.com/Zoilsen/Comp-FSCIL.
Uncertainty quantification for multi-view learning is motivated by the increasing use of multi-view data in scientific problems. A common variant of multi-view learning is late fusion: train separate predictors on individual views and combine them after single-view predictions are available. Existing methods for uncertainty quantification for late fusion often rely on undesirable distributional assumptions for validity. Conformal prediction is one approach that avoids such distributional assumptions. However, naively applying conformal prediction to late-stage fusion pipelines often produces overly conservative and uninformative prediction regions, limiting its downstream utility. We propose a novel methodology, Multi-View Conformal Prediction (MVCP), where conformal prediction is instead performed separately on the single-view predictors and only fused subsequently. Our framework extends the standard scalar formulation of a score function to a multivariate score that produces more efficient downstream prediction regions in both classification and regression settings. We then demonstrate that such improvements can be realized in methods built atop conformalized regressors, specifically in robust predict-then-optimize pipelines.
Imitation learning aims to learn a policy from observing expert demonstrations without access to reward signals from environments. Generative adversarial imitation learning (GAIL) formulates imitation learning as adversarial learning, employing a generator policy learning to imitate expert behaviors and discriminator learning to distinguish the expert demonstrations from agent trajectories. Despite its encouraging results, GAIL training is often brittle and unstable. Inspired by the recent dominance of diffusion models in generative modeling, this work proposes Diffusion-Reward Adversarial Imitation Learning (DRAIL), which integrates a diffusion model into GAIL, aiming to yield more precise and smoother rewards for policy learning. Specifically, we propose a diffusion discriminative classifier to construct an enhanced discriminator; then, we design diffusion rewards based on the classifier's output for policy learning. We conduct extensive experiments in navigation, manipulation, and locomotion, verifying DRAIL's effectiveness compared to prior imitation learning methods. Moreover, additional experimental results demonstrate the generalizability and data efficiency of DRAIL. Visualized learned reward functions of GAIL and DRAIL suggest that DRAIL can produce more precise and smoother rewards.
*Relative overgeneralization* (RO) occurs in cooperative multi-agent learning tasks when agents converge towards a suboptimal joint policy due to overfitting to suboptimal behavior of other agents. No methods have been proposed for addressing RO in multi-agent policy gradient (MAPG) methods although these methods produce state-of-the-art results. To address this gap, we propose a general, yet simple, framework to enable optimistic updates in MAPG methods that alleviate the RO problem. Our approach involves clipping the advantage to eliminate negative values, thereby facilitating optimistic updates in MAPG. The optimism prevents individual agents from quickly converging to a local optimum. Additionally, we provide a formal analysis to show that the proposed method retains optimality at a fixed point. In extensive evaluations on a diverse set of tasks including the *Multi-agent MuJoCo* and *Overcooked* benchmarks, our method outperforms strong baselines on 13 out of 19 tested tasks and matches the performance on the rest.
Deep cooperative multi-agent reinforcement learning has demonstrated its remarkable success over a wide spectrum of complex control tasks. However, recent advances in multi-agent learning mainly focus on value decomposition while leaving entity interactions still intertwined, which easily leads to over-fitting on noisy interactions between entities. In this work, we introduce a novel interactiOn Pattern disenTangling (OPT) method, to disentangle the entity interactions into interaction prototypes, each of which represents an underlying interaction pattern within a subgroup of the entities. OPT facilitates filtering the noisy interactions between irrelevant entities and thus significantly improves generalizability as well as interpretability. Specifically, OPT introduces a sparse disagreement mechanism to encourage sparsity and diversity among discovered interaction prototypes. Then the model selectively restructures these prototypes into a compact interaction pattern by an aggregator with learnable weights. To alleviate the training instability issue caused by partial observability, we propose to maximize the mutual information between the aggregation weights and the history behaviors of each agent. Experiments on single-task, multi-task and zero-shot benchmarks demonstrate that the proposed method yields results superior to the state-of-the-art counterparts. Our code is available at //github.com/liushunyu/OPT.
Traditional offline reinforcement learning methods predominantly operate in a batch-constrained setting. This confines the algorithms to a specific state-action distribution present in the dataset, reducing the effects of distributional shift but restricting the algorithm greatly. In this paper, we alleviate this limitation by introducing a novel framework named \emph{state-constrained} offline reinforcement learning. By exclusively focusing on the dataset's state distribution, our framework significantly enhances learning potential and reduces previous limitations. The proposed setting not only broadens the learning horizon but also improves the ability to combine different trajectories from the dataset effectively, a desirable property inherent in offline reinforcement learning. Our research is underpinned by solid theoretical findings that pave the way for subsequent advancements in this domain. Additionally, we introduce StaCQ, a deep learning algorithm that is both performance-driven on the D4RL benchmark datasets and closely aligned with our theoretical propositions. StaCQ establishes a strong baseline for forthcoming explorations in state-constrained offline reinforcement learning.
Standard contrastive learning approaches usually require a large number of negatives for effective unsupervised learning and often exhibit slow convergence. We suspect this behavior is due to the suboptimal selection of negatives used for offering contrast to the positives. We counter this difficulty by taking inspiration from support vector machines (SVMs) to present max-margin contrastive learning (MMCL). Our approach selects negatives as the sparse support vectors obtained via a quadratic optimization problem, and contrastiveness is enforced by maximizing the decision margin. As SVM optimization can be computationally demanding, especially in an end-to-end setting, we present simplifications that alleviate the computational burden. We validate our approach on standard vision benchmark datasets, demonstrating better performance in unsupervised representation learning over state-of-the-art, while having better empirical convergence properties.
Recent advances in representation learning have demonstrated an ability to represent information from different modalities such as video, text, and audio in a single high-level embedding vector. In this work we present a self-supervised learning framework that is able to learn a representation that captures finer levels of granularity across different modalities such as concepts or events represented by visual objects or spoken words. Our framework relies on a discretized embedding space created via vector quantization that is shared across different modalities. Beyond the shared embedding space, we propose a Cross-Modal Code Matching objective that forces the representations from different views (modalities) to have a similar distribution over the discrete embedding space such that cross-modal objects/actions localization can be performed without direct supervision. In our experiments we show that the proposed discretized multi-modal fine-grained representation (e.g., pixel/word/frame) can complement high-level summary representations (e.g., video/sentence/waveform) for improved performance on cross-modal retrieval tasks. We also observe that the discretized representation uses individual clusters to represent the same semantic concept across modalities.
The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.