Recent advancements in federated learning (FL) seek to increase client-level performance by fine-tuning client parameters on local data or personalizing architectures for the local task. Existing methods for such personalization either prune a global model or fine-tune a global model on a local client distribution. However, these existing methods either personalize at the expense of retaining important global knowledge, or predetermine network layers for fine-tuning, resulting in suboptimal storage of global knowledge within client models. Enlightened by the lottery ticket hypothesis, we first introduce a hypothesis for finding optimal client subnetworks to locally fine-tune while leaving the rest of the parameters frozen. We then propose a novel FL framework, FedSelect, using this procedure that directly personalizes both client subnetwork structure and parameters, via the simultaneous discovery of optimal parameters for personalization and the rest of parameters for global aggregation during training. We show that this method achieves promising results on CIFAR-10.
Many methods for Model-based Reinforcement learning (MBRL) in Markov decision processes (MDPs) provide guarantees for both the accuracy of the model they can deliver and the learning efficiency. At the same time, state abstraction techniques allow for a reduction of the size of an MDP while maintaining a bounded loss with respect to the original problem. Therefore, it may come as a surprise that no such guarantees are available when combining both techniques, i.e., where MBRL merely observes abstract states. Our theoretical analysis shows that abstraction can introduce a dependence between samples collected online (e.g., in the real world). That means that, without taking this dependence into account, results for MBRL do not directly extend to this setting. Our result shows that we can use concentration inequalities for martingales to overcome this problem. This result makes it possible to extend the guarantees of existing MBRL algorithms to the setting with abstraction. We illustrate this by combining R-MAX, a prototypical MBRL algorithm, with abstraction, thus producing the first performance guarantees for model-based `RL from Abstracted Observations': model-based reinforcement learning with an abstract model.
Recommendation models are vital in delivering personalized user experiences by leveraging the correlation between multiple input features. However, deep learning-based recommendation models often face challenges due to evolving user behaviour and item features, leading to covariate shifts. Effective cross-feature learning is crucial to handle data distribution drift and adapting to changing user behaviour. Traditional feature interaction techniques have limitations in achieving optimal performance in this context. This work introduces Ad-Rec, an advanced network that leverages feature interaction techniques to address covariate shifts. This helps eliminate irrelevant interactions in recommendation tasks. Ad-Rec leverages masked transformers to enable the learning of higher-order cross-features while mitigating the impact of data distribution drift. Our approach improves model quality, accelerates convergence, and reduces training time, as measured by the Area Under Curve (AUC) metric. We demonstrate the scalability of Ad-Rec and its ability to achieve superior model quality through comprehensive ablation studies.
In recent years, speech-based self-supervised learning (SSL) has made significant progress in various tasks, including automatic speech recognition (ASR). An ASR model with decent performance can be realized by fine-tuning an SSL model with a small fraction of labeled data. Reducing the demand for labeled data is always of great practical value. In this paper, we further extend the use of SSL to cut down labeling costs with active learning. Three types of units on different granularities are derived from speech signals in an unsupervised way, and their effects are compared by applying a contrastive data selection method. The experimental results show that our proposed data selection framework can effectively improve the word error rate (WER) by more than 11% with the same amount of labeled data, or halve the labeling cost while maintaining the same WER, compared to random selection.
Self-supervised learning (SSL) leverages large datasets of unlabeled speech to reach impressive performance with reduced amounts of annotated data. The high number of proposed approaches fostered the emergence of comprehensive benchmarks that evaluate their performance on a set of downstream tasks exploring various aspects of the speech signal. However, while the number of considered tasks has been growing, most proposals rely upon a single downstream architecture that maps the frozen SSL representations to the task labels. This study examines how benchmarking results are affected by changes in the probing head architecture. Interestingly, we found that altering the downstream architecture structure leads to significant fluctuations in the performance ranking of the evaluated models. Against common practices in speech SSL benchmarking, we evaluate larger-capacity probing heads, showing their impact on performance, inference costs, generalization and multi-level feature exploitation.
In vanilla federated learning (FL) such as FedAvg, the parameter server (PS) and multiple distributed clients can form a typical buyer's market, where the number of PS/buyers of FL services is far less than the number of clients/sellers. In order to improve the performance of FL and reduce the cost of motivating clients to participate in FL, this paper proposes to differentiate the pricing for services provided by different clients rather than simply providing the same service pricing for different clients. The price is differentiated based on the performance improvements brought to FL and their heterogeneity in computing and communication capabilities. To this end, a price-discrimination game (PDG) is formulated to comprehensively address the distributed resource management problems in FL, including multi-objective trade-off, client selection, and incentive mechanism. As the PDG is a mixed-integer nonlinear programming (MINLP) problem, a distributed semi-heuristic algorithm with low computational complexity and low communication overhead is designed to solve it. The simulation result verifies the effectiveness of the proposed approach.
Recently, 3D shape understanding has achieved significant progress due to the advances of deep learning models on various data formats like images, voxels, and point clouds. Among them, point clouds and multi-view images are two complementary modalities of 3D objects and learning representations by fusing both of them has been proven to be fairly effective. While prior works typically focus on exploiting global features of the two modalities, herein we argue that more discriminative features can be derived by modeling ``where to fuse''. To investigate this, we propose a novel Locality-Aware Point-View Fusion Transformer (LATFormer) for 3D shape retrieval and classification. The core component of LATFormer is a module named Locality-Aware Fusion (LAF) which integrates the local features of correlated regions across the two modalities based on the co-occurrence scores. We further propose to filter out scores with low values to obtain salient local co-occurring regions, which reduces redundancy for the fusion process. In our LATFormer, we utilize the LAF module to fuse the multi-scale features of the two modalities both bidirectionally and hierarchically to obtain more informative features. Comprehensive experiments on four popular 3D shape benchmarks covering 3D object retrieval and classification validate its effectiveness.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.