亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-Unmanned Aerial Vehicle (UAV) Networks is a promising solution to providing wireless coverage to ground users in challenging rural areas (such as Internet of Things (IoT) devices in farmlands), where the traditional cellular networks are sparse or unavailable. A key challenge in such networks is the 3D placement of all UAV base stations such that the formed Multi-UAV Network (i) utilizes a minimum number of UAVs while ensuring -- (ii) backhaul connectivity directly (or via other UAVs) to the nearby terrestrial base station, and (iii) wireless coverage to all ground users in the area of operation. This joint Backhaul-and-coverage-aware Drone Deployment (BoaRD) problem is largely unaddressed in the literature, and, thus, is the focus of the paper. We first formulate the BoaRD problem as Integer Linear Programming (ILP). However, the problem is NP-hard, and therefore, we propose a low complexity algorithm with a provable performance guarantee to solve the problem efficiently. Our simulation study shows that the Proposed algorithm performs very close to that of the Optimal algorithm (solved using ILP solver) for smaller scenarios. For larger scenarios, the proposed algorithm greatly outperforms the baseline approaches -- backhaul-aware greedy and random algorithm, respectively by up to 17% and 95% in utilizing fewer UAVs while ensuring 100% ground user coverage and backhaul connectivity for all deployed UAVs across all considered simulation setting.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網(wang)絡會議(yi)。 Publisher:IFIP。 SIT:

In order to meet mobile cellular users' ever-increasing data demands, today's 4G and 5G networks are designed mainly with the goal of maximizing spectral efficiency. While they have made progress in this regard, controlling the carbon footprint and operational costs of such networks remains a long-standing problem among network designers. This paper takes a long view on this problem, envisioning a NextG scenario where the network leverages quantum annealing for cellular baseband processing. We gather and synthesize insights on power consumption, computational throughput and latency, spectral efficiency, operational cost, and feasibility timelines surrounding quantum technology. Armed with these data, we analyze and project the quantitative performance targets future quantum annealing hardware must meet in order to provide a computational and power advantage over CMOS hardware, while matching its whole-network spectral efficiency. Our quantitative analysis predicts that with quantum annealing hardware operating at a 102 $\mu$s problem latency and 3.1M qubits, quantum annealing will achieve a spectral efficiency equal to CMOS computation while reducing power consumption by 41 kW (45% lower) in a representative 5G base station scenario with 400 MHz bandwidth and 64 antennas, and an 8 kW power reduction (16% lower) using 1.5M qubits in a 200 MHz-bandwidth 5G scenario.

A connected dominating set is a widely adopted model for the virtual backbone of a wireless sensor network. In this paper, we design an evolutionary algorithm for the minimum connected dominating set problem (MinCDS), whose performance is theoretically guaranteed in terms of both computation time and approximation ratio. Given a connected graph $G=(V,E)$, a connected dominating set (CDS) is a subset $C\subseteq V$ such that every vertex in $V\setminus C$ has a neighbor in $C$, and the subgraph of $G$ induced by $C$ is connected. The goal of MinCDS is to find a CDS of $G$ with the minimum cardinality. We show that our evolutionary algorithm can find a CDS in expected $O(n^3)$ time which approximates the optimal value within factor $(2+\ln\Delta)$, where $n$ and $\Delta$ are the number of vertices and the maximum degree of graph $G$, respectively.

Hamilton and Moitra (2021) showed that, in certain regimes, it is not possible to accelerate Riemannian gradient descent in the hyperbolic plane if we restrict ourselves to algorithms which make queries in a (large) bounded domain and which receive gradients and function values corrupted by a (small) amount of noise. We show that acceleration remains unachievable for any deterministic algorithm which receives exact gradient and function-value information (unbounded queries, no noise). Our results hold for the classes of strongly and nonstrongly geodesically convex functions, and for a large class of Hadamard manifolds including hyperbolic spaces and the symmetric space $\mathrm{SL}(n) / \mathrm{SO}(n)$ of positive definite $n \times n$ matrices of determinant one. This cements a surprising gap between the complexity of convex optimization and geodesically convex optimization: for hyperbolic spaces, Riemannian gradient descent is optimal on the class of smooth and and strongly geodesically convex functions, in the regime where the condition number scales with the radius of the optimization domain. The key idea for proving the lower bound consists of perturbing the hard functions of Hamilton and Moitra (2021) with sums of bump functions chosen by a resisting oracle.

Since sparse neural networks usually contain many zero weights, these unnecessary network connections can potentially be eliminated without degrading network performance. Therefore, well-designed sparse neural networks have the potential to significantly reduce FLOPs and computational resources. In this work, we propose a new automatic pruning method - Sparse Connectivity Learning (SCL). Specifically, a weight is re-parameterized as an element-wise multiplication of a trainable weight variable and a binary mask. Thus, network connectivity is fully described by the binary mask, which is modulated by a unit step function. We theoretically prove the fundamental principle of using a straight-through estimator (STE) for network pruning. This principle is that the proxy gradients of STE should be positive, ensuring that mask variables converge at their minima. After finding Leaky ReLU, Softplus, and Identity STEs can satisfy this principle, we propose to adopt Identity STE in SCL for discrete mask relaxation. We find that mask gradients of different features are very unbalanced, hence, we propose to normalize mask gradients of each feature to optimize mask variable training. In order to automatically train sparse masks, we include the total number of network connections as a regularization term in our objective function. As SCL does not require pruning criteria or hyper-parameters defined by designers for network layers, the network is explored in a larger hypothesis space to achieve optimized sparse connectivity for the best performance. SCL overcomes the limitations of existing automatic pruning methods. Experimental results demonstrate that SCL can automatically learn and select important network connections for various baseline network structures. Deep learning models trained by SCL outperform the SOTA human-designed and automatic pruning methods in sparsity, accuracy, and FLOPs reduction.

In warehouses, order picking is known to be the most labor-intensive and costly task in which the employees account for a large part of the warehouse performance. Hence, many approaches exist, that optimize the order picking process based on diverse economic criteria. However, most of these approaches focus on a single economic objective at once and disregard ergonomic criteria in their optimization. Further, the influence of the placement of the items to be picked is underestimated and accordingly, too little attention is paid to the interdependence of these two problems. In this work, we aim at optimizing the storage assignment and the order picking problem within mezzanine warehouse with regards to their reciprocal influence. We propose a customized version of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) for optimizing the storage assignment problem as well as an Ant Colony Optimization (ACO) algorithm for optimizing the order picking problem. Both algorithms incorporate multiple economic and ergonomic constraints simultaneously. Furthermore, the algorithms incorporate knowledge about the interdependence between both problems, aiming to improve the overall warehouse performance. Our evaluation results show that our proposed algorithms return better storage assignments and order pick routes compared to commonly used techniques for the following quality indicators for comparing Pareto fronts: Coverage, Generational Distance, Euclidian Distance, Pareto Front Size, and Inverted Generational Distance. Additionally, the evaluation regarding the interaction of both algorithms shows a better performance when combining both proposed algorithms.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

In this paper, an interference-aware path planning scheme for a network of cellular-connected unmanned aerial vehicles (UAVs) is proposed. In particular, each UAV aims at achieving a tradeoff between maximizing energy efficiency and minimizing both wireless latency and the interference level caused on the ground network along its path. The problem is cast as a dynamic game among UAVs. To solve this game, a deep reinforcement learning algorithm, based on echo state network (ESN) cells, is proposed. The introduced deep ESN architecture is trained to allow each UAV to map each observation of the network state to an action, with the goal of minimizing a sequence of time-dependent utility functions. Each UAV uses ESN to learn its optimal path, transmission power level, and cell association vector at different locations along its path. The proposed algorithm is shown to reach a subgame perfect Nash equilibrium (SPNE) upon convergence. Moreover, an upper and lower bound for the altitude of the UAVs is derived thus reducing the computational complexity of the proposed algorithm. Simulation results show that the proposed scheme achieves better wireless latency per UAV and rate per ground user (UE) while requiring a number of steps that is comparable to a heuristic baseline that considers moving via the shortest distance towards the corresponding destinations. The results also show that the optimal altitude of the UAVs varies based on the ground network density and the UE data rate requirements and plays a vital role in minimizing the interference level on the ground UEs as well as the wireless transmission delay of the UAV.

When deploying resource-intensive signal processing applications in wireless sensor or mesh networks, distributing processing blocks over multiple nodes becomes promising. Such distributed applications need to solve the placement problem (which block to run on which node), the routing problem (which link between blocks to map on which path between nodes), and the scheduling problem (which transmission is active when). We investigate a variant where the application graph may contain feedback loops and we exploit wireless networks? inherent multicast advantage. Thus, we propose Multicast-Aware Routing for Virtual network Embedding with Loops in Overlays (MARVELO) to find efficient solutions for scheduling and routing under a detailed interference model. We cast this as a mixed integer quadratically constrained optimisation problem and provide an efficient heuristic. Simulations show that our approach handles complex scenarios quickly.

北京阿比特科技有限公司