亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The increasing reliance on AI-driven solutions, particularly Large Language Models (LLMs) like the GPT series, for information retrieval highlights the critical need for their factuality and fairness, especially amidst the rampant spread of misinformation and disinformation online. Our study evaluates the factual accuracy, stability, and biases in widely adopted GPT models, including GPT-3.5 and GPT-4, contributing to reliability and integrity of AI-mediated information dissemination. We introduce 'Global-Liar,' a dataset uniquely balanced in terms of geographic and temporal representation, facilitating a more nuanced evaluation of LLM biases. Our analysis reveals that newer iterations of GPT models do not always equate to improved performance. Notably, the GPT-4 version from March demonstrates higher factual accuracy than its subsequent June release. Furthermore, a concerning bias is observed, privileging statements from the Global North over the Global South, thus potentially exacerbating existing informational inequities. Regions such as Africa and the Middle East are at a disadvantage, with much lower factual accuracy. The performance fluctuations over time suggest that model updates may not consistently benefit all regions equally. Our study also offers insights into the impact of various LLM configuration settings, such as binary decision forcing, model re-runs and temperature, on model's factuality. Models constrained to binary (true/false) choices exhibit reduced factuality compared to those allowing an 'unclear' option. Single inference at a low temperature setting matches the reliability of majority voting across various configurations. The insights gained highlight the need for culturally diverse and geographically inclusive model training and evaluation. This approach is key to achieving global equity in technology, distributing AI benefits fairly worldwide.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · 大語言模型 · Automator · Performer ·
2024 年 3 月 12 日

Motion planners are essential for the safe operation of automated vehicles across various scenarios. However, no motion planning algorithm has achieved perfection in the literature, and improving its performance is often time-consuming and labor-intensive. To tackle the aforementioned issues, we present DrPlanner, the first framework designed to automatically diagnose and repair motion planners using large language models. Initially, we generate a structured description of the planner and its planned trajectories from both natural and programming languages. Leveraging the profound capabilities of large language models in addressing reasoning challenges, our framework returns repaired planners with detailed diagnostic descriptions. Furthermore, the framework advances iteratively with continuous feedback from the evaluation of the repaired outcomes. Our approach is validated using search-based motion planners; experimental results highlight the need of demonstrations in the prompt and the ability of our framework in identifying and rectifying elusive issues effectively.

Deep neural networks based on linear complex-valued RNNs interleaved with position-wise MLPs are gaining traction as competitive approaches to sequence modeling. Examples of such architectures include state-space models (SSMs) like S4, LRU, and Mamba: recently proposed models that achieve promising performance on text, genetics, and other data that require long-range reasoning. Despite experimental evidence highlighting these architectures' effectiveness and computational efficiency, their expressive power remains relatively unexplored, especially in connection to specific choices crucial in practice - e.g., carefully designed initialization distribution and use of complex numbers. In this paper, we show that combining MLPs with both real or complex linear diagonal recurrences leads to arbitrarily precise approximation of regular causal sequence-to-sequence maps. At the heart of our proof, we rely on a separation of concerns: the linear RNN provides a lossless encoding of the input sequence, and the MLP performs non-linear processing on this encoding. While we show that using real diagonal linear recurrences is enough to achieve universality in this architecture, we prove that employing complex eigenvalues near unit disk - i.e., empirically the most successful strategy in SSMs - greatly helps the RNN in storing information. We connect this finding with the vanishing gradient issue and provide experimental evidence supporting our claims.

The advancement of Multi-modal Pre-training highlights the necessity for a robust Multi-Modal Knowledge Graph (MMKG) representation learning framework. This framework is crucial for integrating structured knowledge into multi-modal Large Language Models (LLMs) at scale, aiming to alleviate issues like knowledge misconceptions and multi-modal hallucinations. In this work, to evaluate models' ability to accurately embed entities within MMKGs, we focus on two widely researched tasks: Multi-modal Knowledge Graph Completion (MKGC) and Multi-modal Entity Alignment (MMEA). Building on this foundation, we propose a novel SNAG method that utilizes a Transformer-based architecture equipped with modality-level noise masking for the robust integration of multi-modal entity features in KGs. By incorporating specific training objectives for both MKGC and MMEA, our approach achieves SOTA performance across a total of ten datasets (three for MKGC and seven for MEMA), demonstrating its robustness and versatility. Besides, SNAG can not only function as a standalone model but also enhance other existing methods, providing stable performance improvements. Our code and data are available at: //github.com/zjukg/SNAG.

With appropriate data selection and training techniques, Large Language Models (LLMs) have demonstrated exceptional success in various medical examinations and multiple-choice questions. However, the application of LLMs in medical dialogue generation-a task more closely aligned with actual medical practice-has been less explored. This gap is attributed to the insufficient medical knowledge of LLMs, which leads to inaccuracies and hallucinated information in the generated medical responses. In this work, we introduce the Medical dialogue with Knowledge enhancement and clinical Pathway encoding (MedKP) framework, which integrates an external knowledge enhancement module through a medical knowledge graph and an internal clinical pathway encoding via medical entities and physician actions. Evaluated with comprehensive metrics, our experiments on two large-scale, real-world online medical consultation datasets (MedDG and KaMed) demonstrate that MedKP surpasses multiple baselines and mitigates the incidence of hallucinations, achieving a new state-of-the-art. Extensive ablation studies further reveal the effectiveness of each component of MedKP. This enhancement advances the development of reliable, automated medical consultation responses using LLMs, thereby broadening the potential accessibility of precise and real-time medical assistance.

We present Polish Information Retrieval Benchmark (PIRB), a comprehensive evaluation framework encompassing 41 text information retrieval tasks for Polish. The benchmark incorporates existing datasets as well as 10 new, previously unpublished datasets covering diverse topics such as medicine, law, business, physics, and linguistics. We conduct an extensive evaluation of over 20 dense and sparse retrieval models, including the baseline models trained by us as well as other available Polish and multilingual methods. Finally, we introduce a three-step process for training highly effective language-specific retrievers, consisting of knowledge distillation, supervised fine-tuning, and building sparse-dense hybrid retrievers using a lightweight rescoring model. In order to validate our approach, we train new text encoders for Polish and compare their results with previously evaluated methods. Our dense models outperform the best solutions available to date, and the use of hybrid methods further improves their performance.

In the rapidly evolving landscape of AI-mediated communication (AIMC), tools powered by Large Language Models (LLMs) are becoming integral to interpersonal communication. Employing a mixed-methods approach, we conducted a one-week diary and interview study to explore users' perceptions of these tools' ability to: 1) support interpersonal communication in the short-term, and 2) lead to potential long-term effects. Our findings indicate that participants view AIMC support favorably, citing benefits such as increased communication confidence, and finding precise language to express their thoughts, navigating linguistic and cultural barriers. However, the study also uncovers current limitations of AIMC tools, including verbosity, unnatural responses, and excessive emotional intensity. These shortcomings are further exacerbated by user concerns about inauthenticity and potential overreliance on the technology. Furthermore, we identified four key communication spaces delineated by communication stakes (high or low) and relationship dynamics (formal or informal) that differentially predict users' attitudes toward AIMC tools. Specifically, participants found the tool is more suitable for communicating in formal relationships than informal ones and more beneficial in high-stakes than low-stakes communication.

We introduce Syntax-Aware Fill-In-the-Middle (SAFIM), a new benchmark for evaluating Large Language Models (LLMs) on the code Fill-in-the-Middle (FIM) task. This benchmark focuses on syntax-aware completions of program structures such as code blocks and conditional expressions, and includes 17,720 examples from multiple programming languages, sourced from recent code submissions after April 2022 to minimize data contamination. SAFIM provides a robust framework with various prompt designs and novel syntax-aware post-processing techniques, facilitating accurate and fair comparisons across LLMs. Our comprehensive evaluation of 15 LLMs shows that FIM pretraining not only enhances FIM proficiency but also improves Left-to-Right (L2R) inference using LLMs. Our findings challenge conventional beliefs and suggest that pretraining methods and data quality have more impact than model size. SAFIM thus serves as a foundational platform for future research in effective pretraining strategies for code LLMs. The evaluation toolkit and dataset are available at //github.com/gonglinyuan/safim, and the leaderboard is available at //safimbenchmark.com.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司