亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine learning models can reach high performance on benchmark natural language processing (NLP) datasets but fail in more challenging settings. We study this issue when a pre-trained model learns dataset artifacts in natural language inference (NLI), the topic of studying the logical relationship between a pair of text sequences. We provide a variety of techniques for analyzing and locating dataset artifacts inside the crowdsourced Stanford Natural Language Inference (SNLI) corpus. We study the stylistic pattern of dataset artifacts in the SNLI. To mitigate dataset artifacts, we employ a unique multi-scale data augmentation technique with two distinct frameworks: a behavioral testing checklist at the sentence level and lexical synonym criteria at the word level. Specifically, our combination method enhances our model's resistance to perturbation testing, enabling it to continuously outperform the pre-trained baseline.

相關內容

Recent developments in transfer learning have boosted the advancements in natural language processing tasks. The performance is, however, dependent on high-quality, manually annotated training data. Especially in the biomedical domain, it has been shown that one training corpus is not enough to learn generic models that are able to efficiently predict on new data. Therefore, state-of-the-art models need the ability of lifelong learning in order to improve performance as soon as new data are available - without the need of re-training the whole model from scratch. We present WEAVER, a simple, yet efficient post-processing method that infuses old knowledge into the new model, thereby reducing catastrophic forgetting. We show that applying WEAVER in a sequential manner results in similar word embedding distributions as doing a combined training on all data at once, while being computationally more efficient. Because there is no need of data sharing, the presented method is also easily applicable to federated learning settings and can for example be beneficial for the mining of electronic health records from different clinics.

State-of-the-art natural language processing models have been shown to achieve remarkable performance in 'closed-world' settings where all the labels in the evaluation set are known at training time. However, in real-world settings, 'novel' instances that do not belong to any known class are often observed. This renders the ability to deal with novelties crucial. To initiate a systematic research in this important area of 'dealing with novelties', we introduce 'NoveltyTask', a multi-stage task to evaluate a system's performance on pipelined novelty 'detection' and 'accommodation' tasks. We provide mathematical formulation of NoveltyTask and instantiate it with the authorship attribution task that pertains to identifying the correct author of a given text. We use Amazon reviews corpus and compile a large dataset (consisting of 250k instances across 200 authors/labels) for NoveltyTask. We conduct comprehensive experiments and explore several baseline methods for the task. Our results show that the methods achieve considerably low performance making the task challenging and leaving sufficient room for improvement. Finally, we believe our work will encourage research in this underexplored area of dealing with novelties, an important step en route to developing robust systems.

Large Language Models have demonstrated remarkable few-shot performance, but the performance can be sensitive to the selection of few-shot instances. We propose PATRON, a new method that uses prompt-based uncertainty estimation for data selection for pre-trained language model fine-tuning under cold-start scenarios, i.e., no initial labeled data are available. In PATRON, we design (1) a prompt-based uncertainty propagation approach to estimate the importance of data points and (2) a partition-then-rewrite (PTR) strategy to promote sample diversity when querying for annotations. Experiments on six text classification datasets show that PATRON outperforms the strongest cold-start data selection baselines by up to 6.9%. Besides, with 128 labels only, PATRON achieves 91.0% and 92.1% of the fully supervised performance based on vanilla fine-tuning and prompt-based learning respectively. Our implementation of PATRON is available at \url{//github.com/yueyu1030/Patron}.

Pre-trained language models (PLMs) have become a prevalent technique in deep learning for code, utilizing a two-stage pre-training and fine-tuning procedure to acquire general knowledge about code and specialize in a variety of downstream tasks. However, the dynamic nature of software codebases poses a challenge to the effectiveness and robustness of PLMs. In particular, world-realistic scenarios potentially lead to significant differences between the distribution of the pre-training and test data, i.e., distribution shift, resulting in a degradation of the PLM's performance on downstream tasks. In this paper, we stress the need for adapting PLMs of code to software data whose distribution changes over time, a crucial problem that has been overlooked in previous works. The motivation of this work is to consider the PLM in a non-stationary environment, where fine-tuning data evolves over time according to a software evolution scenario. Specifically, we design a scenario where the model needs to learn from a stream of programs containing new, unseen APIs over time. We study two widely used PLM architectures, i.e., a GPT2 decoder and a RoBERTa encoder, on two downstream tasks, API call and API usage prediction. We demonstrate that the most commonly used fine-tuning technique from prior work is not robust enough to handle the dynamic nature of APIs, leading to the loss of previously acquired knowledge i.e., catastrophic forgetting. To address these issues, we implement five continual learning approaches, including replay-based and regularization-based methods. Our findings demonstrate that utilizing these straightforward methods effectively mitigates catastrophic forgetting in PLMs across both downstream tasks while achieving comparable or superior performance.

Financial markets are an intriguing place that offer investors the potential to gain large profits if timed correctly. Unfortunately, the dynamic, non-linear nature of financial markets makes it extremely hard to predict future price movements. Within the US stock exchange, there are a countless number of factors that play a role in the price of a company's stock, including but not limited to financial statements, social and news sentiment, overall market sentiment, political happenings and trading psychology. Correlating these factors is virtually impossible for a human. Therefore, we propose STST, a novel approach using a Spatiotemporal Transformer-LSTM model for stock movement prediction. Our model obtains accuracies of 63.707 and 56.879 percent against the ACL18 and KDD17 datasets, respectively. In addition, our model was used in simulation to determine its real-life applicability. It obtained a minimum of 10.41% higher profit than the S&P500 stock index, with a minimum annualized return of 31.24%.

In recent years, pre-trained language models (PLMs) achieve the best performance on a wide range of natural language processing (NLP) tasks. While the first models were trained on general domain data, specialized ones have emerged to more effectively treat specific domains. In this paper, we propose an original study of PLMs in the medical domain on French language. We compare, for the first time, the performance of PLMs trained on both public data from the web and private data from healthcare establishments. We also evaluate different learning strategies on a set of biomedical tasks. In particular, we show that we can take advantage of already existing biomedical PLMs in a foreign language by further pre-train it on our targeted data. Finally, we release the first specialized PLMs for the biomedical field in French, called DrBERT, as well as the largest corpus of medical data under free license on which these models are trained.

With the increasing use of cloud-based services for training and deploying machine learning models, data privacy has become a major concern. This is particularly important for natural language processing (NLP) models, which often process sensitive information such as personal communications and confidential documents. In this study, we propose a method for training NLP models on encrypted text data to mitigate data privacy concerns while maintaining similar performance to models trained on non-encrypted data. We demonstrate our method using two different architectures, namely Doc2Vec+XGBoost and Doc2Vec+LSTM, and evaluate the models on the 20 Newsgroups dataset. Our results indicate that both encrypted and non-encrypted models achieve comparable performance, suggesting that our encryption method is effective in preserving data privacy without sacrificing model accuracy. In order to replicate our experiments, we have provided a Colab notebook at the following address: //t.ly/lR-TP

The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.

As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.

Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations, longer training times, and unexpected model degradation. To address these problems, we present two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We also use a self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and SQuAD benchmarks while having fewer parameters compared to BERT-large.The code and the pretrained models are available at //github.com/google-research/google-research/tree/master/albert.

北京阿比特科技有限公司