亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel optimization-based human mesh recovery method from a single image. Given a test exemplar, previous approaches optimize the pre-trained regression network to minimize the 2D re-projection loss, which however suffer from over-/under-fitting problems. This is because the ``exemplar optimization'' at testing time has too weak relation to the pre-training process, and the exemplar optimization loss function is different from the training loss function. (1) We incorporate exemplar optimization into the training stage. During training, our method first executes exemplar optimization and subsequently proceeds with training-time optimization. The exemplar optimization may run into a wrong direction, while the subsequent training optimization serves to correct the deviation. Involved in training, the exemplar optimization learns to adapt its behavior to training data, thereby acquires generalibility to test exemplars. (2) We devise a dual-network architecture to convey the novel training paradigm, which is composed of a main regression network and an auxiliary network, in which we can formulate the exemplar optimization loss function in the same form as the training loss function. This further enhances the compatibility between the exemplar and training optimizations. Experiments demonstrate that our exemplar optimization after the novel training scheme significantly outperforms state-of-the-art approaches.

相關內容

In this paper, we propose a novel method for 3D scene and object reconstruction from sparse multi-view images. Different from previous methods that leverage extra information such as depth or generalizable features across scenes, our approach leverages the scene properties embedded in the multi-view inputs to create precise pseudo-labels for optimization without any prior training. Specifically, we introduce a geometry-guided approach that improves surface reconstruction accuracy from sparse views by leveraging spherical harmonics to predict the novel radiance while holistically considering all color observations for a point in the scene. Also, our pipeline exploits proxy geometry and correctly handles the occlusion in generating the pseudo-labels of radiance, which previous image-warping methods fail to avoid. Our method, dubbed Ray Augmentation (RayAug), achieves superior results on DTU and Blender datasets without requiring prior training, demonstrating its effectiveness in addressing the problem of sparse view reconstruction. Our pipeline is flexible and can be integrated into other implicit neural reconstruction methods for sparse views.

Adaptive training programs are crucial for recovery post stroke. However, developing programs that automatically adapt depends on quantifying how difficult a task is for a specific individual at a particular stage of their recovery. In this work, we propose a method that automatically generates regions of different task difficulty levels based on an individual's performance. We show that this technique explains the variance in user performance for a reaching task better than previous approaches to estimating task difficulty.

This study designs an adaptive experiment for efficiently estimating average treatment effect (ATEs). We consider an adaptive experiment where an experimenter sequentially samples an experimental unit from a covariate density decided by the experimenter and assigns a treatment. After assigning a treatment, the experimenter observes the corresponding outcome immediately. At the end of the experiment, the experimenter estimates an ATE using gathered samples. The objective of the experimenter is to estimate the ATE with a smaller asymptotic variance. Existing studies have designed experiments that adaptively optimize the propensity score (treatment-assignment probability). As a generalization of such an approach, we propose a framework under which an experimenter optimizes the covariate density, as well as the propensity score, and find that optimizing both covariate density and propensity score reduces the asymptotic variance more than optimizing only the propensity score. Based on this idea, in each round of our experiment, the experimenter optimizes the covariate density and propensity score based on past observations. To design an adaptive experiment, we first derive the efficient covariate density and propensity score that minimizes the semiparametric efficiency bound, a lower bound for the asymptotic variance given a fixed covariate density and a fixed propensity score. Next, we design an adaptive experiment using the efficient covariate density and propensity score sequentially estimated during the experiment. Lastly, we propose an ATE estimator whose asymptotic variance aligns with the minimized semiparametric efficiency bound.

Virtual reality (VR) is a promising data engine for autonomous driving (AD). However, data fidelity in this paradigm is often degraded by VR inconsistency, for which the existing VR approaches become ineffective, as they ignore the inter-dependency between low-level VR synchronizer designs (i.e., data collector) and high-level VR synthesizer designs (i.e., data processor). This paper presents a seamless virtual reality SVR platform for AD, which mitigates such inconsistency, enabling VR agents to interact with each other in a shared symbiotic world. The crux to SVR is an integrated synchronizer and synthesizer IS2 design, which consists of a drift-aware lidar-inertial synchronizer for VR colocation and a motion-aware deep visual synthesis network for augmented reality image generation. We implement SVR on car-like robots in two sandbox platforms, achieving a cm-level VR colocalization accuracy and 3.2% VR image deviation, thereby avoiding missed collisions or model clippings. Experiments show that the proposed SVR reduces the intervention times, missed turns, and failure rates compared to other benchmarks. The SVR-trained neural network can handle unseen situations in real-world environments, by leveraging its knowledge learnt from the VR space.

Most continual segmentation methods tackle the problem as a per-pixel classification task. However, such a paradigm is very challenging, and we find query-based segmenters with built-in objectness have inherent advantages compared with per-pixel ones, as objectness has strong transfer ability and forgetting resistance. Based on these findings, we propose CoMasTRe by disentangling continual segmentation into two stages: forgetting-resistant continual objectness learning and well-researched continual classification. CoMasTRe uses a two-stage segmenter learning class-agnostic mask proposals at the first stage and leaving recognition to the second stage. During continual learning, a simple but effective distillation is adopted to strengthen objectness. To further mitigate the forgetting of old classes, we design a multi-label class distillation strategy suited for segmentation. We assess the effectiveness of CoMasTRe on PASCAL VOC and ADE20K. Extensive experiments show that our method outperforms per-pixel and query-based methods on both datasets. Code will be available at //github.com/jordangong/CoMasTRe.

We consider the task of estimating variational autoencoders (VAEs) when the training data is incomplete. We show that missing data increases the complexity of the model's posterior distribution over the latent variables compared to the fully-observed case. The increased complexity may adversely affect the fit of the model due to a mismatch between the variational and model posterior distributions. We introduce two strategies based on (i) finite variational-mixture and (ii) imputation-based variational-mixture distributions to address the increased posterior complexity. Through a comprehensive evaluation of the proposed approaches, we show that variational mixtures are effective at improving the accuracy of VAE estimation from incomplete data.

This paper revisits a classical challenge in the design of stabilizing controllers for nonlinear systems with a norm-bounded input constraint. By extending Lin-Sontag's universal formula and introducing a generic (state-dependent) scaling term, a unifying controller design method is proposed. The incorporation of this generic scaling term gives a unified controller and enables the derivation of alternative universal formulas with various favorable properties, which makes it suitable for tailored control designs to meet specific requirements and provides versatility across different control scenarios. Additionally, we present a constructive approach to determine the optimal scaling term, leading to an explicit solution to an optimization problem, named optimization-based universal formula. The resulting controller ensures asymptotic stability, satisfies a norm-bounded input constraint, and optimizes a predefined cost function. Finally, the essential properties of the unified controllers are analyzed, including smoothness, continuity at the origin, stability margin, and inverse optimality. Simulations validate the approach, showcasing its effectiveness in addressing a challenging stabilizing control problem of a nonlinear system.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司