The Segment Anything Model (SAM) achieves remarkable promptable segmentation given high-quality prompts which, however, often require good skills to specify. To make SAM robust to casual prompts, this paper presents the first comprehensive analysis on SAM's segmentation stability across a diverse spectrum of prompt qualities, notably imprecise bounding boxes and insufficient points. Our key finding reveals that given such low-quality prompts, SAM's mask decoder tends to activate image features that are biased towards the background or confined to specific object parts. To mitigate this issue, our key idea consists of adjusting the sampling locations of image feature using learnable deformable offsets, while the original SAM model architecture and weights remain unchanged. Consequently, our deformable sampling plugin (DSP) enables SAM to adaptively shift attention to the prompted target regions in a data-driven manner, facilitated by our effective robust training strategy (RTS). During inference, dynamic routing plugin (DRP) is proposed that toggles SAM between the deformable and regular grid sampling modes, conditioned on the input prompt quality. Thus, our solution, termed Stable-SAM, is one of its kind focusing on solely adjusting feature sampling locations, which offers several advantages: 1) improved SAM's segmentation stability across a wide range of prompt qualities, while 2) retaining SAM's powerful promptable segmentation efficiency and generality, with 3) minimal learnable parameters (0.08 M) and fast adaptation (by 1 training epoch). Extensive experiments across multiple datasets validate the effectiveness and advantages of our approach, underscoring Stable-SAM as a more robust solution for segmenting anything. Codes will be released upon acceptance.
Policy gradient methods hold great potential for solving complex continuous control tasks. Still, their training efficiency can be improved by exploiting structure within the optimization problem. Recent work indicates that supervised learning can be accelerated by leveraging the fact that gradients lie in a low-dimensional and slowly-changing subspace. In this paper, we conduct a thorough evaluation of this phenomenon for two popular deep policy gradient methods on various simulated benchmark tasks. Our results demonstrate the existence of such gradient subspaces despite the continuously changing data distribution inherent to reinforcement learning. These findings reveal promising directions for future work on more efficient reinforcement learning, e.g., through improving parameter-space exploration or enabling second-order optimization.
The retail sector presents several open and challenging problems that could benefit from advanced pattern recognition and computer vision techniques. One such critical challenge is planogram compliance control. In this study, we propose a complete embedded system to tackle this issue. Our system consists of four key components as image acquisition and transfer via stand-alone embedded camera module, object detection via computer vision and deep learning methods working on single board computers, planogram compliance control method again working on single board computers, and energy harvesting and power management block to accompany the embedded camera modules. The image acquisition and transfer block is implemented on the ESP-EYE camera module. The object detection block is based on YOLOv5 as the deep learning method and local feature extraction. We implement these methods on Raspberry Pi 4, NVIDIA Jetson Orin Nano, and NVIDIA Jetson AGX Orin as single board computers. The planogram compliance control block utilizes sequence alignment through a modified Needleman-Wunsch algorithm. This block is also working along with the object detection block on the same single board computers. The energy harvesting and power management block consists of solar and RF energy harvesting modules with suitable battery pack for operation. We tested the proposed embedded planogram compliance control system on two different datasets to provide valuable insights on its strengths and weaknesses. The results show that our method achieves F1 scores of 0.997 and 1.0 in object detection and planogram compliance control blocks, respectively. Furthermore, we calculated that the complete embedded system can work in stand-alone form up to two years based on battery. This duration can be further extended with the integration of the proposed solar and RF energy harvesting options.
Multimodal Knowledge Graph Construction (MMKC) refers to the process of creating a structured representation of entities and relationships through multiple modalities such as text, images, videos, etc. However, existing MMKC models have limitations in handling the introduction of new entities and relations due to the dynamic nature of the real world. Moreover, most state-of-the-art studies in MMKC only consider entity and relation extraction from text data while neglecting other multi-modal sources. Meanwhile, the current continual setting for knowledge graph construction only consider entity and relation extraction from text data while neglecting other multi-modal sources. Therefore, there arises the need to explore the challenge of continuous multimodal knowledge graph construction to address the phenomenon of catastrophic forgetting and ensure the retention of past knowledge extracted from different forms of data. This research focuses on investigating this complex topic by developing lifelong multimodal benchmark datasets. Based on the empirical findings that several state-of-the-art MMKC models, when trained on multimedia data, might unexpectedly underperform compared to those solely utilizing textual resources in a continual setting, we propose a Lifelong MultiModal Consistent Transformer Framework (LMC) for continuous multimodal knowledge graph construction. By combining the advantages of consistent KGC strategies within the context of continual learning, we achieve greater balance between stability and plasticity. Our experiments demonstrate the superior performance of our method over prevailing continual learning techniques or multimodal approaches in dynamic scenarios. Code and datasets can be found at //github.com/zjunlp/ContinueMKGC.
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.
Graph Neural Networks (GNNs) draw their strength from explicitly modeling the topological information of structured data. However, existing GNNs suffer from limited capability in capturing the hierarchical graph representation which plays an important role in graph classification. In this paper, we innovatively propose hierarchical graph capsule network (HGCN) that can jointly learn node embeddings and extract graph hierarchies. Specifically, disentangled graph capsules are established by identifying heterogeneous factors underlying each node, such that their instantiation parameters represent different properties of the same entity. To learn the hierarchical representation, HGCN characterizes the part-whole relationship between lower-level capsules (part) and higher-level capsules (whole) by explicitly considering the structure information among the parts. Experimental studies demonstrate the effectiveness of HGCN and the contribution of each component.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan