亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Digital sources have been enabling unprecedented data-driven and large-scale investigations across a wide range of domains, including demography, sociology, geography, urbanism, criminology, and engineering. A major barrier to innovation is represented by the limited availability of dependable digital datasets, especially in the context of data gathered by mobile network operators or service providers, due to concerns about user privacy and industrial competition. The resulting lack of reference datasets curbs the production of new research methods and results, and prevents verifiability and reproducibility of research outcomes. The NetMob23 dataset offers a rare opportunity to the multidisciplinary research community to access rich data about the spatio-temporal consumption of mobile applications in a developed country. The generation process of the dataset sets a new quality standard, leading to information about the demands generated by 68 popular mobile services, geo-referenced at a high resolution of $100\times100$ $m^2$ over 20 metropolitan areas in France, and monitored during 77 consecutive days in 2019.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
 Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

In the burgeoning realm of Internet of Things (IoT) applications on edge devices, data stream compression has become increasingly pertinent. The integration of added compression overhead and limited hardware resources on these devices calls for a nuanced software-hardware co-design. This paper introduces CStream, a pioneering framework crafted for parallelizing stream compression on multicore edge devices. CStream grapples with the distinct challenges of delivering a high compression ratio, high throughput, low latency, and low energy consumption. Notably, CStream distinguishes itself by accommodating an array of stream compression algorithms, a variety of hardware architectures and configurations, and an innovative set of parallelization strategies, some of which are proposed herein for the first time. Our evaluation showcases the efficacy of a thoughtful co-design involving a lossy compression algorithm, asymmetric multicore processors, and our novel, hardware-conscious parallelization strategies. This approach achieves a 2.8x compression ratio with only marginal information loss, 4.3x throughput, 65% latency reduction and 89% energy consumption reduction, compared to designs lacking such strategic integration.

In this study, we focus on learning Hamiltonian systems, which involves predicting the coordinate (q) and momentum (p) variables generated by a symplectic mapping. Based on Chen & Tao (2021), the symplectic mapping is represented by a generating function. To extend the prediction time period, we develop a new learning scheme by splitting the time series (q_i, p_i) into several partitions. We then train a large-step neural network (LSNN) to approximate the generating function between the first partition (i.e. the initial condition) and each one of the remaining partitions. This partition approach makes our LSNN effectively suppress the accumulative error when predicting the system evolution. Then we train the LSNN to learn the motions of the 2:3 resonant Kuiper belt objects for a long time period of 25000 yr. The results show that there are two significant improvements over the neural network constructed in our previous work (Li et al. 2022): (1) the conservation of the Jacobi integral, and (2) the highly accurate predictions of the orbital evolution. Overall, we propose that the designed LSNN has the potential to considerably improve predictions of the long-term evolution of more general Hamiltonian systems.

Cyberattacks are increasingly threatening networked systems, often with the emergence of new types of unknown (zero-day) attacks and the rise of vulnerable devices. While Machine Learning (ML)-based Intrusion Detection Systems (IDSs) have been shown to be extremely promising in detecting these attacks, the need to learn large amounts of labelled data often limits the applicability of ML-based IDSs to cybersystems that only have access to private local data. To address this issue, this paper proposes a novel Decentralized and Online Federated Learning Intrusion Detection (DOF-ID) architecture. DOF-ID is a collaborative learning system that allows each IDS used for a cybersystem to learn from experience gained in other cybersystems in addition to its own local data without violating the data privacy of other systems. As the performance evaluation results using public Kitsune and Bot-IoT datasets show, DOF-ID significantly improves the intrusion detection performance in all collaborating nodes simultaneously with acceptable computation time for online learning.

Graph neural networks (GNNs) have shown high potential for a variety of real-world, challenging applications, but one of the major obstacles in GNN research is the lack of large-scale flexible datasets. Most existing public datasets for GNNs are relatively small, which limits the ability of GNNs to generalize to unseen data. The few existing large-scale graph datasets provide very limited labeled data. This makes it difficult to determine if the GNN model's low accuracy for unseen data is inherently due to insufficient training data or if the model failed to generalize. Additionally, datasets used to train GNNs need to offer flexibility to enable a thorough study of the impact of various factors while training GNN models. In this work, we introduce the Illinois Graph Benchmark (IGB), a research dataset tool that the developers can use to train, scrutinize and systematically evaluate GNN models with high fidelity. IGB includes both homogeneous and heterogeneous academic graphs of enormous sizes, with more than 40% of their nodes labeled. Compared to the largest graph datasets publicly available, the IGB provides over 162X more labeled data for deep learning practitioners and developers to create and evaluate models with higher accuracy. The IGB dataset is a collection of academic graphs designed to be flexible, enabling the study of various GNN architectures, embedding generation techniques, and analyzing system performance issues for node classification tasks. IGB is open-sourced, supports DGL and PyG frameworks, and comes with releases of the raw text that we believe foster emerging language models and GNN research projects. An early public version of IGB is available at //github.com/IllinoisGraphBenchmark/IGB-Datasets.

TalkBank is an online database that facilitates the sharing of linguistics research data. However, the existing TalkBank's API has limited data filtering and batch processing capabilities. To overcome these limitations, this paper introduces a pipeline framework that employs a hierarchical search approach, enabling efficient complex data selection. This approach involves a quick preliminary screening of relevant corpora that a researcher may need, and then perform an in-depth search for target data based on specific criteria. The identified files are then indexed, providing easier access for future analysis. Furthermore, the paper demonstrates how data from different studies curated with the framework can be integrated by standardizing and cleaning metadata, allowing researchers to extract insights from a large, integrated dataset. While being designed for TalkBank, the framework can also be adapted to process data from other open-science platforms.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

Neural architecture-based recommender systems have achieved tremendous success in recent years. However, when dealing with highly sparse data, they still fall short of expectation. Self-supervised learning (SSL), as an emerging technique to learn with unlabeled data, recently has drawn considerable attention in many fields. There is also a growing body of research proceeding towards applying SSL to recommendation for mitigating the data sparsity issue. In this survey, a timely and systematical review of the research efforts on self-supervised recommendation (SSR) is presented. Specifically, we propose an exclusive definition of SSR, on top of which we build a comprehensive taxonomy to divide existing SSR methods into four categories: contrastive, generative, predictive, and hybrid. For each category, the narrative unfolds along its concept and formulation, the involved methods, and its pros and cons. Meanwhile, to facilitate the development and evaluation of SSR models, we release an open-source library SELFRec, which incorporates multiple benchmark datasets and evaluation metrics, and has implemented a number of state-of-the-art SSR models for empirical comparison. Finally, we shed light on the limitations in the current research and outline the future research directions.

Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.

Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

北京阿比特科技有限公司