We propose superfast (aka sublinear cost) algorithms for two fundamental problems of Matrix Computations, that is, Norm Estimation and Iterative Refinement of Low Rank Approximation (LRA). A superfast algorithm only accesses a small fraction of all entries of an input matrix and cannot accurately estimate their norms or output their close LRA for worst case inputs. Thus, we begin with some well-known algorithms solving these problems in linear or super linear time and then propose superfast modifications, which still promise to succeed for most or a large class of inputs, according to our tests with real world inputs.
Causal inference from observational data is crucial for many disciplines such as medicine and economics. However, sharp bounds for causal effects under relaxations of the unconfoundedness assumption (causal sensitivity analysis) are subject to ongoing research. So far, works with sharp bounds are restricted to fairly simple settings (e.g., a single binary treatment). In this paper, we propose a unified framework for causal sensitivity analysis under unobserved confounding in various settings. For this, we propose a flexible generalization of the marginal sensitivity model (MSM) and then derive sharp bounds for a large class of causal effects. This includes (conditional) average treatment effects, effects for mediation analysis and path analysis, and distributional effects. Furthermore, our sensitivity model is applicable to discrete, continuous, and time-varying treatments. It allows us to interpret the partial identification problem under unobserved confounding as a distribution shift in the latent confounders while evaluating the causal effect of interest. In the special case of a single binary treatment, our bounds for (conditional) average treatment effects coincide with recent optimality results for causal sensitivity analysis. Finally, we propose a scalable algorithm to estimate our sharp bounds from observational data.
Diffusion models (DMs) have demonstrated advantageous potential on generative tasks. Widespread interest exists in incorporating DMs into downstream applications, such as producing or editing photorealistic images. However, practical deployment and unprecedented power of DMs raise legal issues, including copyright protection and monitoring of generated content. In this regard, watermarking has been a proven solution for copyright protection and content monitoring, but it is underexplored in the DMs literature. Specifically, DMs generate samples from longer tracks and may have newly designed multimodal structures, necessitating the modification of conventional watermarking pipelines. To this end, we conduct comprehensive analyses and derive a recipe for efficiently watermarking state-of-the-art DMs (e.g., Stable Diffusion), via training from scratch or finetuning. Our recipe is straightforward but involves empirically ablated implementation details, providing a foundation for future research on watermarking DMs. The code is available at //github.com/yunqing-me/WatermarkDM.
Evolutionary Computation (EC) has emerged as a powerful field of Artificial Intelligence, inspired by nature's mechanisms of gradual development. However, EC approaches often face challenges such as stagnation, diversity loss, computational complexity, population initialization, and premature convergence. To overcome these limitations, researchers have integrated learning algorithms with evolutionary techniques. This integration harnesses the valuable data generated by EC algorithms during iterative searches, providing insights into the search space and population dynamics. Similarly, the relationship between evolutionary algorithms and Machine Learning (ML) is reciprocal, as EC methods offer exceptional opportunities for optimizing complex ML tasks characterized by noisy, inaccurate, and dynamic objective functions. These hybrid techniques, known as Evolutionary Machine Learning (EML), have been applied at various stages of the ML process. EC techniques play a vital role in tasks such as data balancing, feature selection, and model training optimization. Moreover, ML tasks often require dynamic optimization, for which Evolutionary Dynamic Optimization (EDO) is valuable. This paper presents the first comprehensive exploration of reciprocal integration between EDO and ML. The study aims to stimulate interest in the evolutionary learning community and inspire innovative contributions in this domain.
Counterfactual Regret Minimization (CFR) and its variants are the best algorithms so far for solving large-scale incomplete information games. However, we believe that there are two problems with CFR: First, matrix multiplication is required in CFR iteration, and the time complexity of one iteration is too high; Secondly, the game characteristics in the real world are different. Just using one CFR algorithm will not be perfectly suitable for all game problems. For these two problems, this paper proposes a new algorithm called Pure CFR (PCFR) based on CFR. PCFR can be seen as a combination of CFR and Fictitious Play (FP), inheriting the concept of counterfactual regret (value) from CFR, and using the best response strategy instead of the regret matching strategy for the next iteration. This algorithm has three advantages. First, PCFR can be combined with any CFR variant. The resulting Pure MCCFR (PMCCFR) can significantly reduce the time and space complexity of one iteration. Secondly, our experiments show that the convergence speed of the PMCCFR is 2$\sim$3 times that of the MCCFR. Finally, there is a type of game that is very suitable for PCFR, we call this type of game clear-game, which is characterized by a high proportion of dominated strategies. Experiments show that in clear-game, the convergence rate of PMCCFR is two orders of magnitude higher than that of MCCFR.
There is a bijection between odd prime dimensional qudit pure stabilizer states modulo invertible scalars and affine Lagrangian subspaces of finite dimensional symplectic $\mathbb{F}_p$-vector spaces. In the language of the stabilizer formalism, full rank stabilizer tableaux are exactly the bases for affine Lagrangian subspaces. This correspondence extends to an isomorphism of props: the composition of stabilizer circuits corresponds to the relational composition of affine subspaces spanned by the tableaux, the tensor product corresponds to the direct sum. In this paper, we extend this correspondence between stabilizer circuits and tableaux to the mixed setting; regarding stabilizer codes as affine coisotropic subspaces (again only in odd prime qudit dimension/for qubit CSS codes). We show that by splitting the projector for a stabilizer code we recover the error detection protocol and the error correction protocol with affine classical processing power.
Score-based Generative Models (SGMs) have demonstrated exceptional synthesis outcomes across various tasks. However, the current design landscape of the forward diffusion process remains largely untapped and often relies on physical heuristics or simplifying assumptions. Utilizing insights from the development of scalable Bayesian posterior samplers, we present a complete recipe for formulating forward processes in SGMs, ensuring convergence to the desired target distribution. Our approach reveals that several existing SGMs can be seen as specific manifestations of our framework. Building upon this method, we introduce Phase Space Langevin Diffusion (PSLD), which relies on score-based modeling within an augmented space enriched by auxiliary variables akin to physical phase space. Empirical results exhibit the superior sample quality and improved speed-quality trade-off of PSLD compared to various competing approaches on established image synthesis benchmarks. Remarkably, PSLD achieves sample quality akin to state-of-the-art SGMs (FID: 2.10 for unconditional CIFAR-10 generation). Lastly, we demonstrate the applicability of PSLD in conditional synthesis using pre-trained score networks, offering an appealing alternative as an SGM backbone for future advancements. Code and model checkpoints can be accessed at \url{//github.com/mandt-lab/PSLD}.
Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.
Graph Convolutional Network (GCN) has achieved extraordinary success in learning effective task-specific representations of nodes in graphs. However, regarding Heterogeneous Information Network (HIN), existing HIN-oriented GCN methods still suffer from two deficiencies: (1) they cannot flexibly explore all possible meta-paths and extract the most useful ones for a target object, which hinders both effectiveness and interpretability; (2) they often need to generate intermediate meta-path based dense graphs, which leads to high computational complexity. To address the above issues, we propose an interpretable and efficient Heterogeneous Graph Convolutional Network (ie-HGCN) to learn the representations of objects in HINs. It is designed as a hierarchical aggregation architecture, i.e., object-level aggregation first, followed by type-level aggregation. The novel architecture can automatically extract useful meta-paths for each object from all possible meta-paths (within a length limit), which brings good model interpretability. It can also reduce the computational cost by avoiding intermediate HIN transformation and neighborhood attention. We provide theoretical analysis about the proposed ie-HGCN in terms of evaluating the usefulness of all possible meta-paths, its connection to the spectral graph convolution on HINs, and its quasi-linear time complexity. Extensive experiments on three real network datasets demonstrate the superiority of ie-HGCN over the state-of-the-art methods.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.