亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Persistence diagrams are efficient descriptors of the topology of a point cloud. As they do not naturally belong to a Hilbert space, standard statistical methods cannot be directly applied to them. Instead, feature maps (or representations) are commonly used for the analysis. A large class of feature maps, which we call linear, depends on some weight functions, the choice of which is a critical issue. An important criterion to choose a weight function is to ensure stability of the feature maps with respect to Wasserstein distances on diagrams. We improve known results on the stability of such maps, and extend it to general weight functions. We also address the choice of the weight function by considering an asymptotic setting; assume that $\mathbb{X}_n$ is an i.i.d. sample from a density on $[0,1]^d$. For the \v{C}ech and Rips filtrations, we characterize the weight functions for which the corresponding feature maps converge as $n$ approaches infinity, and by doing so, we prove laws of large numbers for the total persistences of such diagrams. Those two approaches (stability and convergence) lead to the same simple heuristic for tuning weight functions: if the data lies near a $d$-dimensional manifold, then a sensible choice of weight function is the persistence to the power $\alpha$ with $\alpha \geq d$.

相關內容

Data separation is a well-studied phenomenon that can cause problems in the estimation and inference from binary response models. Complete or quasi-complete separation occurs when there is a combination of regressors in the model whose value can perfectly predict one or both outcomes. In such cases, and such cases only, the maximum likelihood estimates and the corresponding standard errors are infinite. It is less widely known that the same can happen in further microeconometric models. One of the few works in the area is Santos Silva and Tenreyro (2010) who note that the finiteness of the maximum likelihood estimates in Poisson regression depends on the data configuration and propose a strategy to detect and overcome the consequences of data separation. However, their approach can lead to notable bias on the parameter estimates when the regressors are correlated. We illustrate how bias-reducing adjustments to the maximum likelihood score equations can overcome the consequences of separation in Poisson and Tobit regression models.

Under mild regularity conditions, gradient-based methods converge globally to a critical point in the single-loss setting. This is known to break down for vanilla gradient descent when moving to multi-loss optimization, but can we hope to build some algorithm with global guarantees? We negatively resolve this open problem by proving that desirable convergence properties cannot simultaneously hold for any algorithm. Our result has more to do with the existence of games with no satisfactory outcomes, than with algorithms per se. More explicitly we construct a two-player game with zero-sum interactions whose losses are both coercive and analytic, but whose only simultaneous critical point is a strict maximum. Any 'reasonable' algorithm, defined to avoid strict maxima, will therefore fail to converge. This is fundamentally different from single losses, where coercivity implies existence of a global minimum. Moreover, we prove that a wide range of existing gradient-based methods almost surely have bounded but non-convergent iterates in a constructed zero-sum game for suitably small learning rates. It nonetheless remains an open question whether such behavior can arise in high-dimensional games of interest to ML practitioners, such as GANs or multi-agent RL.

Under the classical long-span asymptotic framework we develop a class of Generalized Laplace (GL) inference methods for the change-point dates in a linear time series regression model with multiple structural changes analyzed in, e.g., Bai and Perron (1998). The GL estimator is defined by an integration rather than optimization-based method and relies on the least-squares criterion function. It is interpreted as a classical (non-Bayesian) estimator and the inference methods proposed retain a frequentist interpretation. This approach provides a better approximation about the uncertainty in the data of the change-points relative to existing methods. On the theoretical side, depending on some input (smoothing) parameter, the class of GL estimators exhibits a dual limiting distribution; namely, the classical shrinkage asymptotic distribution, or a Bayes-type asymptotic distribution. We propose an inference method based on Highest Density Regions using the latter distribution. We show that it has attractive theoretical properties not shared by the other popular alternatives, i.e., it is bet-proof. Simulations confirm that these theoretical properties translate to better finite-sample performance.

In this paper, we consider a variational formulation for the Dirichlet problem of the wave equation with zero boundary and initial conditions, where we use integration by parts in space and time. To prove unique solvability in a subspace of $H^1(Q$) with $Q$ being the space-time domain, the classical assumption is to consider the right-hand side $f$ in $L^2(Q)$. Here, we analyze a generalized setting of this variational formulation, which allows us to prove unique solvability also for $f$ being in the dual space of the test space, i.e., the solution operator is an isomorphism between the ansatz space and the dual of the test space. This new approach is based on a suitable extension of the ansatz space to include the information of the differential operator of the wave equation at the initial time $t=0$. These results are of utmost importance for the formulation and numerical analysis of unconditionally stable space-time finite element methods, and for the numerical analysis of boundary element methods to overcome the well-known norm gap in the analysis of boundary integral operators.

Reeb spaces, as well as their discretized versions called Mappers, are common descriptors used in Topological Data Analysis, with plenty of applications in various fields of science, such as computational biology and data visualization, among others. The stability and quantification of the rate of convergence of the Mapper to the Reeb space has been studied a lot in recent works [BBMW19, CO17, CMO18, MW16], focusing on the case where a scalar-valued filter is used for the computation of Mapper. On the other hand, much less is known in the multivariate case, when the codomain of the filter is $\mathbb{R}^p$, and in the general case, when it is a general metric space $(Z, d_Z)$, instead of $\mathbb{R}$. The few results that are available in this setting [DMW17, MW16] can only handle continuous topological spaces and cannot be used as is for finite metric spaces representing data, such as point clouds and distance matrices. In this article, we introduce a slight modification of the usual Mapper construction and we give risk bounds for estimating the Reeb space using this estimator. Our approach applies in particular to the setting where the filter function used to compute Mapper is also estimated from data, such as the eigenfunctions of PCA. Our results are given with respect to the Gromov-Hausdorff distance, computed with specific filter-based pseudometrics for Mappers and Reeb spaces defined in [DMW17]. We finally provide applications of this setting in statistics and machine learning for different kinds of target filters, as well as numerical experiments that demonstrate the relevance of our approach

To a mesh function we associate the natural analogue of the Monge-Ampere measure. The latter is shown to be equivalent to the Monge-Ampere measure of the convex envelope. We prove that the uniform convergence to a bounded convex function of mesh functions implies the uniform convergence on compact subsets of their convex envelopes and hence the weak convergence of the associated Monge-Ampere measures. We also give conditions for mesh functions to have a subsequence which converges uniformly to a convex function. Our result can be used to give alternate proofs of the convergence of some discretizations for the second boundary value problem for the Monge-Ampere equation and was used for a recently proposed discretization of the latter. For mesh functions which are uniformly bounded and satisfy a convexity condition at the discrete level, we show that there is a subsequence which converges uniformly on compact subsets to a convex function. The convex envelopes of the mesh functions of the subsequence also converge uniformly on compact subsets. If in addition they agree with a continuous convex function on the boundary, the limit function is shown to satisfy the boundary condition strongly.

In matrix-valued datasets the sampled matrices often exhibit correlations among both their rows and their columns. A useful and parsimonious model of such dependence is the matrix normal model, in which the covariances among the elements of a random matrix are parameterized in terms of the Kronecker product of two covariance matrices, one representing row covariances and one representing column covariance. An appealing feature of such a matrix normal model is that the Kronecker covariance structure allows for standard likelihood inference even when only a very small number of data matrices is available. For instance, in some cases a likelihood ratio test of dependence may be performed with a sample size of one. However, more generally the sample size required to ensure boundedness of the matrix normal likelihood or the existence of a unique maximizer depends in a complicated way on the matrix dimensions. This motivates the study of how large a sample size is needed to ensure that maximum likelihood estimators exist, and exist uniquely with probability one. Our main result gives precise sample size thresholds in the paradigm where the number of rows and the number of columns of the data matrices differ by at most a factor of two. Our proof uses invariance properties that allow us to consider data matrices in canonical form, as obtained from the Kronecker canonical form for matrix pencils.

The Mat{\'e}rn family of isotropic covariance functions has been central to the theoretical development and application of statistical models for geospatial data. For global data defined over the whole sphere representing planet Earth, the natural distance between any two locations is the great circle distance. In this setting, the Mat{\'e}rn family of covariance functions has a restriction on the smoothness parameter, making it an unappealing choice to model smooth data. Finding a suitable analogue for modelling data on the sphere is still an open problem. This paper proposes a new family of isotropic covariance functions for random fields defined over the sphere. The proposed family has a parameter that indexes the mean square differentiability of the corresponding Gaussian field, and allows for any admissible range of fractal dimension. Our simulation study mimics the fixed domain asymptotic setting, which is the most natural regime for sampling on a closed and bounded set. As expected, our results support the analogous results (under the same asymptotic scheme) for planar processes that not all parameters can be estimated consistently. We apply the proposed model to a dataset of precipitable water content over a large portion of the Earth, and show that the model gives more precise predictions of the underlying process at unsampled locations than does the Mat{\'e}rn model using chordal distances.

Low-dimensional embeddings of nodes in large graphs have proved extremely useful in a variety of prediction tasks, from content recommendation to identifying protein functions. However, most existing approaches require that all nodes in the graph are present during training of the embeddings; these previous approaches are inherently transductive and do not naturally generalize to unseen nodes. Here we present GraphSAGE, a general, inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data. Instead of training individual embeddings for each node, we learn a function that generates embeddings by sampling and aggregating features from a node's local neighborhood. Our algorithm outperforms strong baselines on three inductive node-classification benchmarks: we classify the category of unseen nodes in evolving information graphs based on citation and Reddit post data, and we show that our algorithm generalizes to completely unseen graphs using a multi-graph dataset of protein-protein interactions.

We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide $F_1$ scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.

北京阿比特科技有限公司