The swift progression of machine learning (ML) have not gone unnoticed in the realm of statistical mechanics. ML techniques have attracted attention by the classical density-functional theory (DFT) community, as they enable discovery of free-energy functionals to determine the equilibrium-density profile of a many-particle system. Within DFT, the external potential accounts for the interaction of the many-particle system with an external field, thus, affecting the density distribution. In this context, we introduce a statistical-learning framework to infer the external potential exerted on a many-particle system. We combine a Bayesian inference approach with the classical DFT apparatus to reconstruct the external potential, yielding a probabilistic description of the external potential functional form with inherent uncertainty quantification. Our framework is exemplified with a grand-canonical one-dimensional particle ensemble with excluded volume interactions in a confined geometry. The required training dataset is generated using a Monte Carlo (MC) simulation where the external potential is applied to the grand-canonical ensemble. The resulting particle coordinates from the MC simulation are fed into the learning framework to uncover the external potential. This eventually allows us to compute the equilibrium density profile of the system by using the tools of DFT. Our approach benchmarks the inferred density against the exact one calculated through the DFT formulation with the true external potential. The proposed Bayesian procedure accurately infers the external potential and the density profile. We also highlight the external-potential uncertainty quantification conditioned on the amount of available simulated data. The seemingly simple case study introduced in this work might serve as a prototype for studying a wide variety of applications, including adsorption and capillarity.
Conformal inference is a fundamental and versatile tool that provides distribution-free guarantees for many machine learning tasks. We consider the transductive setting, where decisions are made on a test sample of $m$ new points, giving rise to $m$ conformal $p$-values. {While classical results only concern their marginal distribution, we show that their joint distribution follows a P\'olya urn model, and establish a concentration inequality for their empirical distribution function.} The results hold for arbitrary exchangeable scores, including {\it adaptive} ones that can use the covariates of the test+calibration samples at training stage for increased accuracy. We demonstrate the usefulness of these theoretical results through uniform, in-probability guarantees for two machine learning tasks of current interest: interval prediction for transductive transfer learning and novelty detection based on two-class classification.
Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples can be difficult through standard methods. Inference can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. In this paper, we develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in this threshold choice and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation. We apply our method to the well-known, troublesome example of the River Nidd dataset.
The fundamental computational issues in Bayesian inverse problems (BIPs) governed by partial differential equations (PDEs) stem from the requirement of repeated forward model evaluations. A popular strategy to reduce such cost is to replace expensive model simulations by computationally efficient approximations using operator learning, motivated by recent progresses in deep learning. However, using the approximated model directly may introduce a modeling error, exacerbating the already ill-posedness of inverse problems. Thus, balancing between accuracy and efficiency is essential for the effective implementation of such approaches. To this end, we develop an adaptive operator learning framework that can reduce modeling error gradually by forcing the surrogate to be accurate in local areas. This is accomplished by fine-tuning the pre-trained approximate model during the inversion process with adaptive points selected by a greedy algorithm, which requires only a few forward model evaluations. To validate our approach, we adopt DeepOnet to construct the surrogate and use unscented Kalman inversion (UKI) to approximate the solution of BIPs, respectively. Furthermore, we present rigorous convergence guarantee in the linear case using the framework of UKI. We test the approach on several benchmarks, including the Darcy flow, the heat source inversion problem, and the reaction diffusion problems. Numerical results demonstrate that our method can significantly reduce computational costs while maintaining inversion accuracy.
Generative diffusion models have achieved spectacular performance in many areas of generative modeling. While the fundamental ideas behind these models come from non-equilibrium physics, in this paper we show that many aspects of these models can be understood using the tools of equilibrium statistical mechanics. Using this reformulation, we show that generative diffusion models undergo second-order phase transitions corresponding to symmetry breaking phenomena. We argue that this lead to a form of instability that lies at the heart of their generative capabilities and that can be described by a set of mean field critical exponents. We conclude by analyzing recent work connecting diffusion models and associative memory networks in view of the thermodynamic formulations.
Gaussian approximations are routinely employed in Bayesian statistics to ease inference when the target posterior is intractable. Although these approximations are asymptotically justified by Bernstein-von Mises type results, in practice the expected Gaussian behavior may poorly represent the shape of the posterior, thus affecting approximation accuracy. Motivated by these considerations, we derive an improved class of closed-form approximations of posterior distributions which arise from a new treatment of a third-order version of the Laplace method yielding approximations in a tractable family of skew-symmetric distributions. Under general assumptions which account for misspecified models and non-i.i.d. settings, this family of approximations is shown to have a total variation distance from the target posterior whose rate of convergence improves by at least one order of magnitude the one established by the classical Bernstein-von Mises theorem. Specializing this result to the case of regular parametric models shows that the same improvement in approximation accuracy can be also derived for polynomially bounded posterior functionals. Unlike other higher-order approximations, our results prove that it is possible to derive closed-form and valid densities which are expected to provide, in practice, a more accurate, yet similarly-tractable, alternative to Gaussian approximations of the target posterior, while inheriting its limiting frequentist properties. We strengthen such arguments by developing a practical skew-modal approximation for both joint and marginal posteriors that achieves the same theoretical guarantees of its theoretical counterpart by replacing the unknown model parameters with the corresponding MAP estimate. Empirical studies confirm that our theoretical results closely match the remarkable performance observed in practice, even in finite, possibly small, sample regimes.
Numerous applications in the field of molecular communications (MC) such as healthcare systems are often event-driven. The conventional Shannon capacity may not be the appropriate metric for assessing performance in such cases. We propose the identification (ID) capacity as an alternative metric. Particularly, we consider randomized identification (RI) over the discrete-time Poisson channel (DTPC), which is typically used as a model for MC systems that utilize molecule-counting receivers. In the ID paradigm, the receiver's focus is not on decoding the message sent. However, he wants to determine whether a message of particular significance to him has been sent or not. In contrast to Shannon transmission codes, the size of ID codes for a Discrete Memoryless Channel (DMC) grows doubly exponentially fast with the blocklength, if randomized encoding is used. In this paper, we derive the capacity formula for RI over the DTPC subject to some peak and average power constraints. Furthermore, we analyze the case of state-dependent DTPC.
We study the stability of randomized Taylor schemes for ODEs. We consider three notions of probabilistic stability: asymptotic stability, mean-square stability, and stability in probability. We prove fundamental properties of the probabilistic stability regions and benchmark them against the absolute stability regions for deterministic Taylor schemes.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.
Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.