The notion of causality assumes a paramount position within the realm of human cognition. Over the past few decades, there has been significant advancement in the domain of causal effect estimation across various disciplines, including but not limited to computer science, medicine, economics, and industrial applications. Given the continued advancements in deep learning methodologies, there has been a notable surge in its utilization for the estimation of causal effects using counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective functions to estimate counterfactual data unbiasedly. Different from the existing surveys on causal models in machine learning, this review mainly focuses on the overview of the deep causal models, and its core contributions are as follows: 1) we cast insight on a comprehensive overview of deep causal models from both timeline of development and method classification perspectives; 2) we outline some typical applications of causal effect estimation to industry; 3) we also endeavor to present a detailed categorization and analysis on relevant datasets, source codes and experiments.
Attracted by the impressive power of Multimodal Large Language Models (MLLMs), the public is increasingly utilizing them to improve the efficiency of daily work. Nonetheless, the vulnerabilities of MLLMs to unsafe instructions bring huge safety risks when these models are deployed in real-world scenarios. In this paper, we systematically survey current efforts on the evaluation, attack, and defense of MLLMs' safety on images and text. We begin with introducing the overview of MLLMs on images and text and understanding of safety, which helps researchers know the detailed scope of our survey. Then, we review the evaluation datasets and metrics for measuring the safety of MLLMs. Next, we comprehensively present attack and defense techniques related to MLLMs' safety. Finally, we analyze several unsolved issues and discuss promising research directions.
Famous people, such as celebrities and influencers, are harassed online on a daily basis. Online harassment mentally disturbs them and negatively affects society. However, limited studies have been conducted on the online harassment victimization of famous people, and its effects remain unclear. We surveyed Japanese famous people ($N=213$), who were influential people who appeared on television and other traditional media and on social media, regarding online harassment victimization, emotional injury, and action against offenders and revealed that various forms of online harassment are prevalent. Some victims used the anti-harassment functions provided by weblogs and social media systems (e.g., blocking/muting/reporting offender accounts and closing comment forms), talked about their victimization to close people, and contacted relevant authorities to take legal action (talent agencies, legal consultants, and police). By contrast, some victims felt compelled to accept harassment and did not initiate action for offenses. We propose several approaches to support victims, inhibit online harassment, and educate people. Our findings help that platforms establish support systems against online harassment.
Pretrained Graph Neural Networks have been widely adopted for various molecular property prediction tasks. Despite their ability to encode structural and relational features of molecules, traditional fine-tuning of such pretrained GNNs on the target task can lead to poor generalization. To address this, we explore the adaptation of pretrained GNNs to the target task by jointly training them with multiple auxiliary tasks. This could enable the GNNs to learn both general and task-specific features, which may benefit the target task. However, a major challenge is to determine the relatedness of auxiliary tasks with the target task. To address this, we investigate multiple strategies to measure the relevance of auxiliary tasks and integrate such tasks by adaptively combining task gradients or by learning task weights via bi-level optimization. Additionally, we propose a novel gradient surgery-based approach, Rotation of Conflicting Gradients ($\mathtt{RCGrad}$), that learns to align conflicting auxiliary task gradients through rotation. Our experiments with state-of-the-art pretrained GNNs demonstrate the efficacy of our proposed methods, with improvements of up to 7.7% over fine-tuning. This suggests that incorporating auxiliary tasks along with target task fine-tuning can be an effective way to improve the generalizability of pretrained GNNs for molecular property prediction.
Region based knowledge graph embeddings represent relations as geometric regions. This has the advantage that the rules which are captured by the model are made explicit, making it straightforward to incorporate prior knowledge and to inspect learned models. Unfortunately, existing approaches are severely restricted in their ability to model relational composition, and hence also their ability to model rules, thus failing to deliver on the main promise of region based models. With the aim of addressing these limitations, we investigate regions which are composed of axis-aligned octagons. Such octagons are particularly easy to work with, as intersections and compositions can be straightforwardly computed, while they are still sufficiently expressive to model arbitrary knowledge graphs. Among others, we also show that our octagon embeddings can properly capture a non-trivial class of rule bases. Finally, we show that our model achieves competitive experimental results.
Digital circuits, despite having been studied for nearly a century and used at scale for about half that time, have until recently evaded a fully compositional theoretical understanding, in which arbitrary circuits may be freely composed together without consulting their internals. Recent work remedied this theoretical shortcoming by showing how digital circuits can be presented compositionally as morphisms in a freely generated symmetric traced category. However, this was done informally; in this paper we refine and expand the previous work in several ways, culminating in the presentation of three sound and complete semantics for digital circuits: denotational, operational and algebraic. For the denotational semantics, we establish a correspondence between stream functions with certain properties and circuits constructed syntactically. For the operational semantics, we present the reductions required to model how a circuit processes a value, including the addition of a new reduction for eliminating non-delay-guarded feedback; this leads to an adequate notion of observational equivalence for digital circuits. Finally, we define a new family of equations for translating circuits into bisimilar circuits of a 'normal form', leading to a complete algebraic semantics for sequential circuits
While Large Language Models (LLMs) have proven to be exceptional on a variety of tasks after alignment, they may still produce responses that contradict the context or world knowledge confidently, a phenomenon known as ``hallucination''. In this paper, we demonstrate that reducing the inconsistency between the external knowledge encapsulated in the training data and the intrinsic knowledge inherited in the pretraining corpus could mitigate hallucination in alignment. Specifically, we introduce a novel knowledge consistent alignment (KCA) approach, which involves automatically formulating examinations based on external knowledge for accessing the comprehension of LLMs. For data encompassing knowledge inconsistency, KCA implements several simple yet efficient strategies for processing. We illustrate the superior performance of the proposed KCA approach in mitigating hallucinations across six benchmarks using LLMs of different backbones and scales. Furthermore, we confirm the correlation between knowledge inconsistency and hallucination, signifying the effectiveness of reducing knowledge inconsistency in alleviating hallucinations. Our code, model weights, and data are public at \url{//github.com/fanqiwan/KCA}.
Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.