Observational studies of treatment effects require adjustment for confounding variables. However, causal inference methods typically cannot deliver perfect adjustment on all measured baseline variables, and there is often ambiguity about which variables should be prioritized. Standard prioritization methods based on treatment imbalance alone neglect variables' relationships with the outcome. We propose the joint variable importance plot to guide variable prioritization for observational studies. Since not all variables are equally relevant to the outcome, the plot adds outcome associations to quantify the potential confounding jointly with the standardized mean difference. To enhance comparisons on the plot between variables with different confounding relationships, we also derive and plot bias curves. Variable prioritization using the plot can produce recommended values for tuning parameters in many existing matching and weighting methods. We showcase the use of the joint variable importance plots in the design of a balance-constrained matched study to evaluate whether taking an antidiabetic medication, glyburide, increases the incidence of C-section delivery among pregnant individuals with gestational diabetes.
Website reliability labels underpin almost all research in misinformation detection. However, misinformation sources often exhibit transient behavior, which makes many such labeled lists obsolete over time. We demonstrate that Search Engine Optimization (SEO) attributes provide strong signals for predicting news site reliability. We introduce a novel attributed webgraph dataset with labeled news domains and their connections to outlinking and backlinking domains. We demonstrate the success of graph neural networks in detecting news site reliability using these attributed webgraphs, and show that our baseline news site reliability classifier outperforms current SoTA methods on the PoliticalNews dataset, achieving an F1 score of 0.96. Finally, we introduce and evaluate a novel graph-based algorithm for discovering previously unknown misinformation news sources.
The ability to identify granular materials facilitates the emergence of various new applications in robotics, ranging from cooking at home to truck loading at mining sites. However, granular material identification remains a challenging and underexplored area. In this work, we present a novel interactive material identification framework that enables robots to identify a wide range of granular materials using only a force-torque sensor for perception. Our framework, comprising interactive exploration, feature extraction, and classification stages, prioritizes simplicity and transparency for seamless integration into various manipulation pipelines. We evaluate the proposed approach through extensive experiments with a real-world dataset comprising 11 granular materials, which we also make publicly available. Additionally, we conducted a comprehensive qualitative analysis of the dataset to offer deeper insights into its nature, aiding future development. Our results show that the proposed method is capable of accurately identifying a wide range of granular materials solely relying on force measurements obtained from direct interaction with the materials. Code and dataset are available at: //irobotics.aalto.fi/indentify_granular/.
Effectively addressing the challenge of industrial Anomaly Detection (AD) necessitates an ample supply of defective samples, a constraint often hindered by their scarcity in industrial contexts. This paper introduces a novel algorithm designed to augment defective samples, thereby enhancing AD performance. The proposed method tailors the blended latent diffusion model for defect sample generation, employing a diffusion model to generate defective samples in the latent space. A feature editing process, controlled by a ``trimap" mask and text prompts, refines the generated samples. The image generation inference process is structured into three stages: a free diffusion stage, an editing diffusion stage, and an online decoder adaptation stage. This sophisticated inference strategy yields high-quality synthetic defective samples with diverse pattern variations, leading to significantly improved AD accuracies based on the augmented training set. Specifically, on the widely recognized MVTec AD dataset, the proposed method elevates the state-of-the-art (SOTA) performance of AD with augmented data by 1.5%, 1.9%, and 3.1% for AD metrics AP, IAP, and IAP90, respectively. The implementation code of this work can be found at the GitHub repository //github.com/GrandpaXun242/AdaBLDM.git
Efficient estimation methods for simultaneous autoregressive (SAR) models with missing data in the response variable have been well-developed in the literature. It is common practice to introduce a measurement error into SAR models. The measurement error serves to distinguish the noise component from the spatial process. However, the previous literature has not considered adding a measurement error to the SAR models with missing data. The maximum likelihood estimation for such models with large datasets is challenging and computationally expensive. This paper proposes two efficient likelihood-based estimation methods: the marginal maximum likelihood (ML) and expectation-maximisation (EM) algorithms for estimating SAR models with both measurement errors and missing data in the response variable. The spatial error model (SEM) and the spatial autoregressive model (SAM), two popular SAR model types, are considered. The missing data mechanism is assumed to follow missing at random (MAR). While naive calculation approaches lead to computational complexities of $O(n^3)$, where n is the total number of observations, our computational approaches for both the marginal ML and EM algorithms are designed to reduce the computational complexity. The performance of the proposed methods is investigated empirically using simulated and real datasets.
In randomized clinical trials, adjusting for baseline covariates can improve credibility and efficiency for demonstrating and quantifying treatment effects. This article studies the augmented inverse propensity weighted (AIPW) estimator, which is a general form of covariate adjustment that uses linear, generalized linear, and non-parametric or machine learning models for the conditional mean of the response given covariates. Under covariate-adaptive randomization, we establish general theorems that show a complete picture of the asymptotic normality, {efficiency gain, and applicability of AIPW estimators}. In particular, we provide for the first time a rigorous theoretical justification of using machine learning methods with cross-fitting for dependent data under covariate-adaptive randomization. Based on the general theorems, we offer insights on the conditions for guaranteed efficiency gain and universal applicability {under different randomization schemes}, which also motivate a joint calibration strategy using some constructed covariates after applying AIPW. Our methods are implemented in the R package RobinCar.
Spiking neural networks (SNNs), inspired by the neural circuits of the brain, are promising in achieving high computational efficiency with biological fidelity. Nevertheless, it is quite difficult to optimize SNNs because the functional roles of their modelling components remain unclear. By designing and evaluating several variants of the classic model, we systematically investigate the functional roles of key modelling components, leakage, reset, and recurrence, in leaky integrate-and-fire (LIF) based SNNs. Through extensive experiments, we demonstrate how these components influence the accuracy, generalization, and robustness of SNNs. Specifically, we find that the leakage plays a crucial role in balancing memory retention and robustness, the reset mechanism is essential for uninterrupted temporal processing and computational efficiency, and the recurrence enriches the capability to model complex dynamics at a cost of robustness degradation. With these interesting observations, we provide optimization suggestions for enhancing the performance of SNNs in different scenarios. This work deepens the understanding of how SNNs work, which offers valuable guidance for the development of more effective and robust neuromorphic models.
We present SIM-FSVGD for learning robot dynamics from data. As opposed to traditional methods, SIM-FSVGD leverages low-fidelity physical priors, e.g., in the form of simulators, to regularize the training of neural network models. While learning accurate dynamics already in the low data regime, SIM-FSVGD scales and excels also when more data is available. We empirically show that learning with implicit physical priors results in accurate mean model estimation as well as precise uncertainty quantification. We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system. Using model-based RL, we demonstrate a highly dynamic parking maneuver with drifting, using less than half the data compared to the state of the art.
We propose a Dynamical System (DS) approach to learn complex, possibly periodic motion plans from kinesthetic demonstrations using Neural Ordinary Differential Equations (NODE). To ensure reactivity and robustness to disturbances, we propose a novel approach that selects a target point at each time step for the robot to follow, by combining tools from control theory and the target trajectory generated by the learned NODE. A correction term to the NODE model is computed online by solving a quadratic program that guarantees stability and safety using control Lyapunov functions and control barrier functions, respectively. Our approach outperforms baseline DS learning techniques on the LASA handwriting dataset and complex periodic trajectories. It is also validated on the Franka Emika robot arm to produce stable motions for wiping and stirring tasks that do not have a single attractor, while being robust to perturbations and safe around humans and obstacles.
The evolution of diffusion models has greatly impacted video generation and understanding. Particularly, text-to-video diffusion models (VDMs) have significantly facilitated the customization of input video with target appearance, motion, etc. Despite these advances, challenges persist in accurately distilling motion information from video frames. While existing works leverage the consecutive frame residual as the target motion vector, they inherently lack global motion context and are vulnerable to frame-wise distortions. To address this, we present Spectral Motion Alignment (SMA), a novel framework that refines and aligns motion vectors using Fourier and wavelet transforms. SMA learns motion patterns by incorporating frequency-domain regularization, facilitating the learning of whole-frame global motion dynamics, and mitigating spatial artifacts. Extensive experiments demonstrate SMA's efficacy in improving motion transfer while maintaining computational efficiency and compatibility across various video customization frameworks.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.