Progress in speech processing has been facilitated by shared datasets and benchmarks. Historically these have focused on automatic speech recognition (ASR), speaker identification, or other lower-level tasks. Interest has been growing in higher-level spoken language understanding tasks, including using end-to-end models, but there are fewer annotated datasets for such tasks. At the same time, recent work shows the possibility of pre-training generic representations and then fine-tuning for several tasks using relatively little labeled data. We propose to create a suite of benchmark tasks for Spoken Language Understanding Evaluation (SLUE) consisting of limited-size labeled training sets and corresponding evaluation sets. This resource would allow the research community to track progress, evaluate pre-trained representations for higher-level tasks, and study open questions such as the utility of pipeline versus end-to-end approaches. We present the first phase of the SLUE benchmark suite, consisting of named entity recognition, sentiment analysis, and ASR on the corresponding datasets. We focus on naturally produced (not read or synthesized) speech, and freely available datasets. We provide new transcriptions and annotations on subsets of the VoxCeleb and VoxPopuli datasets, evaluation metrics and results for baseline models, and an open-source toolkit to reproduce the baselines and evaluate new models.
In this work, we propose a bi-directional long short-term memory (BiLSTM) network based COVID-19 detection method using breath/speech/cough signals. By using the acoustic signals to train the network, respectively, we can build individual models for three tasks, whose parameters are averaged to obtain an average model, which is then used as the initialization for the BiLSTM model training of each task. This initialization method can significantly improve the performance on the three tasks, which surpasses the official baseline results. Besides, we also utilize a public pre-trained model wav2vec2.0 and pre-train it using the official DiCOVA datasets. This wav2vec2.0 model is utilized to extract high-level features of the sound as the model input to replace conventional mel-frequency cepstral coefficients (MFCC) features. Experimental results reveal that using high-level features together with MFCC features can improve the performance. To further improve the performance, we also deploy some preprocessing techniques like silent segment removal, amplitude normalization and time-frequency mask. The proposed detection model is evaluated on the DiCOVA dataset and results show that our method achieves an area under curve (AUC) score of 88.44% on blind test in the fusion track.
Wav2vec2.0 is a popular self-supervised pre-training framework for learning speech representations in the context of automatic speech recognition (ASR). It was shown that wav2vec2.0 has a good robustness against the domain shift, while the noise robustness is still unclear. In this work, we therefore first analyze the noise robustness of wav2vec2.0 via experiments. We observe that wav2vec2.0 pre-trained on noisy data can obtain good representations and thus improve the ASR performance on the noisy test set, which however brings a performance degradation on the clean test set. To avoid this issue, in this work we propose an enhanced wav2vec2.0 model. Specifically, the noisy speech and the corresponding clean version are fed into the same feature encoder, where the clean speech provides training targets for the model. Experimental results reveal that the proposed method can not only improve the ASR performance on the noisy test set which surpasses the original wav2vec2.0, but also ensure a tiny performance decrease on the clean test set. In addition, the effectiveness of the proposed method is demonstrated under different types of noise conditions.
Named Entity Recognition (NER) plays an important role in a wide range of natural language processing tasks, such as relation extraction, question answering, etc. However, previous studies on NER are limited to a particular genre, using small manually-annotated or large but low-quality datasets. In this work, we propose a semi-supervised annotation framework to make full use of abstracts from Wikipedia and obtain a large and high-quality dataset called AnchorNER. We assume anchored strings in abstracts are named entities and annotate them with entity types mentioned in DBpedia. To improve the coverage, we design a neural correction model trained with a human-annotated NER dataset, DocRED, to correct the false-negative entity labels, and then train a BERT model with the corrected dataset. We evaluate our trained model on six NER datasets and our experimental results show that we have obtained state-of-the-art open-domain performances --- on top of the strong baselines BERT-base and BERT-large, we achieve relative improvements of 4.66% and 3.07% respectively.
We study the use of the Wave-U-Net architecture for speech enhancement, a model introduced by Stoller et al for the separation of music vocals and accompaniment. This end-to-end learning method for audio source separation operates directly in the time domain, permitting the integrated modelling of phase information and being able to take large temporal contexts into account. Our experiments show that the proposed method improves several metrics, namely PESQ, CSIG, CBAK, COVL and SSNR, over the state-of-the-art with respect to the speech enhancement task on the Voice Bank corpus (VCTK) dataset. We find that a reduced number of hidden layers is sufficient for speech enhancement in comparison to the original system designed for singing voice separation in music. We see this initial result as an encouraging signal to further explore speech enhancement in the time-domain, both as an end in itself and as a pre-processing step to speech recognition systems.
Voice conversion (VC) aims at conversion of speaker characteristic without altering content. Due to training data limitations and modeling imperfections, it is difficult to achieve believable speaker mimicry without introducing processing artifacts; performance assessment of VC, therefore, usually involves both speaker similarity and quality evaluation by a human panel. As a time-consuming, expensive, and non-reproducible process, it hinders rapid prototyping of new VC technology. We address artifact assessment using an alternative, objective approach leveraging from prior work on spoofing countermeasures (CMs) for automatic speaker verification. Therein, CMs are used for rejecting `fake' inputs such as replayed, synthetic or converted speech but their potential for automatic speech artifact assessment remains unknown. This study serves to fill that gap. As a supplement to subjective results for the 2018 Voice Conversion Challenge (VCC'18) data, we configure a standard constant-Q cepstral coefficient CM to quantify the extent of processing artifacts. Equal error rate (EER) of the CM, a confusability index of VC samples with real human speech, serves as our artifact measure. Two clusters of VCC'18 entries are identified: low-quality ones with detectable artifacts (low EERs), and higher quality ones with less artifacts. None of the VCC'18 systems, however, is perfect: all EERs are < 30 % (the `ideal' value would be 50 %). Our preliminary findings suggest potential of CMs outside of their original application, as a supplemental optimization and benchmarking tool to enhance VC technology.
This paper investigates the impact of word-based RNN language models (RNN-LMs) on the performance of end-to-end automatic speech recognition (ASR). In our prior work, we have proposed a multi-level LM, in which character-based and word-based RNN-LMs are combined in hybrid CTC/attention-based ASR. Although this multi-level approach achieves significant error reduction in the Wall Street Journal (WSJ) task, two different LMs need to be trained and used for decoding, which increase the computational cost and memory usage. In this paper, we further propose a novel word-based RNN-LM, which allows us to decode with only the word-based LM, where it provides look-ahead word probabilities to predict next characters instead of the character-based LM, leading competitive accuracy with less computation compared to the multi-level LM. We demonstrate the efficacy of the word-based RNN-LMs using a larger corpus, LibriSpeech, in addition to WSJ we used in the prior work. Furthermore, we show that the proposed model achieves 5.1 %WER for WSJ Eval'92 test set when the vocabulary size is increased, which is the best WER reported for end-to-end ASR systems on this benchmark.
Despite the numerous developments in object tracking, further development of current tracking algorithms is limited by small and mostly saturated datasets. As a matter of fact, data-hungry trackers based on deep-learning currently rely on object detection datasets due to the scarcity of dedicated large-scale tracking datasets. In this work, we present TrackingNet, the first large-scale dataset and benchmark for object tracking in the wild. We provide more than 30K videos with more than 14 million dense bounding box annotations. Our dataset covers a wide selection of object classes in broad and diverse context. By releasing such a large-scale dataset, we expect deep trackers to further improve and generalize. In addition, we introduce a new benchmark composed of 500 novel videos, modeled with a distribution similar to our training dataset. By sequestering the annotation of the test set and providing an online evaluation server, we provide a fair benchmark for future development of object trackers. Deep trackers fine-tuned on a fraction of our dataset improve their performance by up to 1.6% on OTB100 and up to 1.7% on TrackingNet Test. We provide an extensive benchmark on TrackingNet by evaluating more than 20 trackers. Our results suggest that object tracking in the wild is far from being solved.
Person re-identification (re-id) is a critical problem in video analytics applications such as security and surveillance. The public release of several datasets and code for vision algorithms has facilitated rapid progress in this area over the last few years. However, directly comparing re-id algorithms reported in the literature has become difficult since a wide variety of features, experimental protocols, and evaluation metrics are employed. In order to address this need, we present an extensive review and performance evaluation of single- and multi-shot re-id algorithms. The experimental protocol incorporates the most recent advances in both feature extraction and metric learning. To ensure a fair comparison, all of the approaches were implemented using a unified code library that includes 11 feature extraction algorithms and 22 metric learning and ranking techniques. All approaches were evaluated using a new large-scale dataset that closely mimics a real-world problem setting, in addition to 16 other publicly available datasets: VIPeR, GRID, CAVIAR, DukeMTMC4ReID, 3DPeS, PRID, V47, WARD, SAIVT-SoftBio, CUHK01, CHUK02, CUHK03, RAiD, iLIDSVID, HDA+ and Market1501. The evaluation codebase and results will be made publicly available for community use.
While neural machine translation (NMT) models provide improved translation quality in an elegant, end-to-end framework, it is less clear what they learn about language. Recent work has started evaluating the quality of vector representations learned by NMT models on morphological and syntactic tasks. In this paper, we investigate the representations learned at different layers of NMT encoders. We train NMT systems on parallel data and use the trained models to extract features for training a classifier on two tasks: part-of-speech and semantic tagging. We then measure the performance of the classifier as a proxy to the quality of the original NMT model for the given task. Our quantitative analysis yields interesting insights regarding representation learning in NMT models. For instance, we find that higher layers are better at learning semantics while lower layers tend to be better for part-of-speech tagging. We also observe little effect of the target language on source-side representations, especially with higher quality NMT models.
This paper surveys the current state of the art in Natural Language Generation (NLG), defined as the task of generating text or speech from non-linguistic input. A survey of NLG is timely in view of the changes that the field has undergone over the past decade or so, especially in relation to new (usually data-driven) methods, as well as new applications of NLG technology. This survey therefore aims to (a) give an up-to-date synthesis of research on the core tasks in NLG and the architectures adopted in which such tasks are organised; (b) highlight a number of relatively recent research topics that have arisen partly as a result of growing synergies between NLG and other areas of artificial intelligence; (c) draw attention to the challenges in NLG evaluation, relating them to similar challenges faced in other areas of Natural Language Processing, with an emphasis on different evaluation methods and the relationships between them.