亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Blockchain applications are witnessing rapid evolution, necessitating the integration of upgradeable smart contracts. Software patterns have been proposed to summarize upgradeable smart contract best practices. However, research is missing on the comparison of these upgradeable smart contract patterns, especially regarding gas costs related to deployment and execution. This study aims to provide an in-depth analysis of gas costs associated with two prevalent upgradeable smart contract patterns: the Proxy and diamond patterns. The Proxy pattern utilizes a Proxy pointing to a logic contract, while the diamond pattern enables a Proxy to point to multiple logic contracts. We conduct a comparative analysis of gas costs for both patterns in contrast to a traditional non-upgradeable smart contract. We derive from this analysis a theoretical contribution in the form of two consolidated blockchain patterns and a corresponding decision model. By so doing we hope to contribute to the broader understanding of upgradeable smart contract patterns.

相關內容

Models based on vision transformer architectures are considered state-of-the-art when it comes to image classification tasks. However, they require extensive computational resources both for training and deployment. The problem is exacerbated as the amount and complexity of the data increases. Quantum-based vision transformer models could potentially alleviate this issue by reducing the training and operating time while maintaining the same predictive power. Although current quantum computers are not yet able to perform high-dimensional tasks yet, they do offer one of the most efficient solutions for the future. In this work, we construct several variations of a quantum hybrid vision transformer for a classification problem in high energy physics (distinguishing photons and electrons in the electromagnetic calorimeter). We test them against classical vision transformer architectures. Our findings indicate that the hybrid models can achieve comparable performance to their classical analogues with a similar number of parameters.

Vision-aided localization for low-cost mobile robots in diverse environments has attracted widespread attention recently. Although many current systems are applicable in daytime environments, nocturnal visual localization is still an open problem owing to the lack of stable visual information. An insight from most nocturnal scenes is that the static and bright streetlights are reliable visual information for localization. Hence we propose a nocturnal vision-aided localization system in streetlight maps with a novel data association and matching scheme using object detection methods. We leverage the Invariant Extended Kalman Filter (InEKF) to fuse IMU, odometer, and camera measurements for consistent state estimation at night. Furthermore, a tracking recovery module is also designed for tracking failures. Experiments on multiple real nighttime scenes validate that the system can achieve remarkably accurate and robust localization in nocturnal environments.

Reconstructing natural speech from neural activity is vital for enabling direct communication via brain-computer interfaces. Previous efforts have explored the conversion of neural recordings into speech using complex deep neural network (DNN) models trained on extensive neural recording data, which is resource-intensive under regular clinical constraints. However, achieving satisfactory performance in reconstructing speech from limited-scale neural recordings has been challenging, mainly due to the complexity of speech representations and the neural data constraints. To overcome these challenges, we propose a novel transfer learning framework for neural-driven speech reconstruction, called Neural2Speech, which consists of two distinct training phases. First, a speech autoencoder is pre-trained on readily available speech corpora to decode speech waveforms from the encoded speech representations. Second, a lightweight adaptor is trained on the small-scale neural recordings to align the neural activity and the speech representation for decoding. Remarkably, our proposed Neural2Speech demonstrates the feasibility of neural-driven speech reconstruction even with only 20 minutes of intracranial data, which significantly outperforms existing baseline methods in terms of speech fidelity and intelligibility.

We propose EnCLAP, a novel framework for automated audio captioning. EnCLAP employs two acoustic representation models, EnCodec and CLAP, along with a pretrained language model, BART. We also introduce a new training objective called masked codec modeling that improves acoustic awareness of the pretrained language model. Experimental results on AudioCaps and Clotho demonstrate that our model surpasses the performance of baseline models. Source code will be available at //github.com/jaeyeonkim99/EnCLAP . An online demo is available at //huggingface.co/spaces/enclap-team/enclap .

Due to recent development in quantum computing, the invention of a large quantum computer is no longer a distant future. Quantum computing severely threatens modern cryptography, as the hard mathematical problems beneath classic public-key cryptosystems can be solved easily by a sufficiently large quantum computer. As such, researchers have proposed PQC based on problems that even quantum computers cannot efficiently solve. Generally, post-quantum encryption and signatures can be hard to compute. This could potentially be a problem for IoT, which usually consist lightweight devices with limited computational power. In this paper, we survey existing literature on the performance for PQC in resource-constrained devices to understand the severeness of this problem. We also review recent proposals to optimize PQC algorithms for resource-constrained devices. Overall, we find that whilst PQC may be feasible for reasonably lightweight IoT, proposals for their optimization seem to lack standardization. As such, we suggest future research to seek coordination, in order to ensure an efficient and safe migration toward IoT for the post-quantum era.

Primary motivation for this work was the need to implement hardware accelerators for a newly proposed ANN structure called Auto Resonance Network (ARN) for robotic motion planning. ARN is an approximating feed-forward hierarchical and explainable network. It can be used in various AI applications but the application base was small. Therefore, the objective of the research was twofold: to develop a new application using ARN and to implement a hardware accelerator for ARN. As per the suggestions given by the Doctoral Committee, an image recognition system using ARN has been implemented. An accuracy of around 94% was achieved with only 2 layers of ARN. The network also required a small training data set of about 500 images. Publicly available MNIST dataset was used for this experiment. All the coding was done in Python. Massive parallelism seen in ANNs presents several challenges to CPU design. For a given functionality, e.g., multiplication, several copies of serial modules can be realized within the same area as a parallel module. Advantage of using serial modules compared to parallel modules under area constraints has been discussed. One of the module often useful in ANNs is a multi-operand addition. One problem in its implementation is that the estimation of carry bits when the number of operands changes. A theorem to calculate exact number of carry bits required for a multi-operand addition has been presented in the thesis which alleviates this problem. The main advantage of the modular approach to multi-operand addition is the possibility of pipelined addition with low reconfiguration overhead. This results in overall increase in throughput for large number of additions, typically seen in several DNN configurations.

Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms

We present VeriX, a first step towards verified explainability of machine learning models in safety-critical applications. Specifically, our sound and optimal explanations can guarantee prediction invariance against bounded perturbations. We utilise constraint solving techniques together with feature sensitivity ranking to efficiently compute these explanations. We evaluate our approach on image recognition benchmarks and a real-world scenario of autonomous aircraft taxiing.

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.

In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.

北京阿比特科技有限公司