亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This article delves into the lessons learned, highlighting the importance of developer wellbeing. We introduce the Integrated Job Demands-Resources and Self-Determination Model (IJARS) for a comprehensive understanding of pandemic-era productivity. Emphasizing Agile values, mental health initiatives, and learning from disruptions, we advocate for reshaped workplaces that prioritize work-life balance and hybrid models, preparing for future challenges. This guidance aims for a resilient and adaptive future, turning adversity into opportunity.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 因子分解 · Better · 優化器 · 端到端 ·
2023 年 11 月 29 日

In autonomous driving, predicting future events in advance and evaluating the foreseeable risks empowers autonomous vehicles to better plan their actions, enhancing safety and efficiency on the road. To this end, we propose Drive-WM, the first driving world model compatible with existing end-to-end planning models. Through a joint spatial-temporal modeling facilitated by view factorization, our model generates high-fidelity multiview videos in driving scenes. Building on its powerful generation ability, we showcase the potential of applying the world model for safe driving planning for the first time. Particularly, our Drive-WM enables driving into multiple futures based on distinct driving maneuvers, and determines the optimal trajectory according to the image-based rewards. Evaluation on real-world driving datasets verifies that our method could generate high-quality, consistent, and controllable multiview videos, opening up possibilities for real-world simulations and safe planning.

The fast pace of advances in AI promises to revolutionize various aspects of knowledge work, extending its influence to daily life and professional fields alike. We advocate for a paradigm where AI is seen as a collaborative co-pilot, working under human guidance rather than as a mere tool. Drawing from relevant research and literature in the disciplines of Human-Computer Interaction and Human Factors Engineering, we highlight the criticality of maintaining human oversight in AI interactions. Reflecting on lessons from aviation, we address the dangers of over-relying on automation, such as diminished human vigilance and skill erosion. Our paper proposes a design approach that emphasizes active human engagement, control, and skill enhancement in the AI partnership, aiming to foster a harmonious, effective, and empowering human-AI relationship. We particularly call out the critical need to design AI interaction capabilities and software applications to enable and celebrate the primacy of human agency. This calls for designs for human-AI partnership that cede ultimate control and responsibility to the human user as pilot, with the AI co-pilot acting in a well-defined supporting role.

Envisioned as one of the most promising technologies, holographic multiple-input multiple-output (H-MIMO) recently attracts notable research interests for its great potential in expanding wireless possibilities and achieving fundamental wireless limits. Empowered by the nearly continuous, large and energy-efficient surfaces with powerful electromagnetic (EM) wave control capabilities, H-MIMO opens up the opportunity for signal processing in a more fundamental EM-domain, paving the way for realizing holographic imaging level communications in supporting the extremely high spectral efficiency and energy efficiency in future networks. In this article, we try to implement a generalized EM-domain near-field channel modeling and study its capacity limit of point-to-point H-MIMO systems that equips arbitrarily placed surfaces in a line-of-sight (LoS) environment. Two effective and computational-efficient channel models are established from their integral counterpart, where one is with a sophisticated formula but showcases more accurate, and another is concise with a slight precision sacrifice. Furthermore, we unveil the capacity limit using our channel model, and derive a tight upper bound based upon an elaborately built analytical framework. Our result reveals that the capacity limit grows logarithmically with the product of transmit element area, receive element area, and the combined effects of $1/{{d}_{mn}^2}$, $1/{{d}_{mn}^4}$, and $1/{{d}_{mn}^6}$ over all transmit and receive antenna elements, where $d_{mn}$ indicates the distance between each transmit and receive elements. Numerical evaluations validate the effectiveness of our channel models, and showcase the slight disparity between the upper bound and the exact capacity, which is beneficial for predicting practical system performance.

Nowadays, short videos (SVs) are essential to information acquisition and sharing in our life. The prevailing use of SVs to spread emotions leads to the necessity of emotion recognition in SVs. Considering the lack of SVs emotion data, we introduce a large-scale dataset named eMotions, comprising 27,996 videos. Meanwhile, we alleviate the impact of subjectivities on labeling quality by emphasizing better personnel allocations and multi-stage annotations. In addition, we provide the category-balanced and test-oriented variants through targeted data sampling. Some commonly used videos (e.g., facial expressions and postures) have been well studied. However, it is still challenging to understand the emotions in SVs. Since the enhanced content diversity brings more distinct semantic gaps and difficulties in learning emotion-related features, and there exists information gaps caused by the emotion incompleteness under the prevalently audio-visual co-expressions. To tackle these problems, we present an end-to-end baseline method AV-CPNet that employs the video transformer to better learn semantically relevant representations. We further design the two-stage cross-modal fusion module to complementarily model the correlations of audio-visual features. The EP-CE Loss, incorporating three emotion polarities, is then applied to guide model optimization. Extensive experimental results on nine datasets verify the effectiveness of AV-CPNet. Datasets and code will be open on //github.com/XuecWu/eMotions.

Balancing the trade-off between accuracy and robustness is a long-standing challenge in time series forecasting. While most of existing robust algorithms have achieved certain suboptimal performance on clean data, sustaining the same performance level in the presence of data perturbations remains extremely hard. In this paper, we study a wide array of perturbation scenarios and propose novel defense mechanisms against adversarial attacks using real-world telecom data. We compare our strategy against two existing adversarial training algorithms under a range of maximal allowed perturbations, defined using $\ell_{\infty}$-norm, $\in [0.1,0.4]$. Our findings reveal that our hybrid strategy, which is composed of a classifier to detect adversarial examples, a denoiser to eliminate noise from the perturbed data samples, and a standard forecaster, achieves the best performance on both clean and perturbed data. Our optimal model can retain up to $92.02\%$ the performance of the original forecasting model in terms of Mean Squared Error (MSE) on clean data, while being more robust than the standard adversarially trained models on perturbed data. Its MSE is 2.71$\times$ and 2.51$\times$ lower than those of comparing methods on normal and perturbed data, respectively. In addition, the components of our models can be trained in parallel, resulting in better computational efficiency. Our results indicate that we can optimally balance the trade-off between the performance and robustness of forecasting models by improving the classifier and denoiser, even in the presence of sophisticated and destructive poisoning attacks.

As the scaling of Large Language Models (LLMs) has dramatically enhanced their capabilities, there has been a growing focus on the alignment problem to ensure their responsible and ethical use. While existing alignment efforts predominantly concentrate on universal values such as the HHH principle, the aspect of culture, which is inherently pluralistic and diverse, has not received adequate attention. This work introduces a new benchmark, CDEval, aimed at evaluating the cultural dimensions of LLMs. CDEval is constructed by incorporating both GPT-4's automated generation and human verification, covering six cultural dimensions across seven domains. Our comprehensive experiments provide intriguing insights into the culture of mainstream LLMs, highlighting both consistencies and variations across different dimensions and domains. The findings underscore the importance of integrating cultural considerations in LLM development, particularly for applications in diverse cultural settings. Through CDEval, we aim to broaden the horizon of LLM alignment research by including cultural dimensions, thus providing a more holistic framework for the future development and evaluation of LLMs. This benchmark serves as a valuable resource for cultural studies in LLMs, paving the way for more culturally aware and sensitive models.

This review paper takes a comprehensive look at malicious attacks against FL, categorizing them from new perspectives on attack origins and targets, and providing insights into their methodology and impact. In this survey, we focus on threat models targeting the learning process of FL systems. Based on the source and target of the attack, we categorize existing threat models into four types, Data to Model (D2M), Model to Data (M2D), Model to Model (M2M) and composite attacks. For each attack type, we discuss the defense strategies proposed, highlighting their effectiveness, assumptions and potential areas for improvement. Defense strategies have evolved from using a singular metric to excluding malicious clients, to employing a multifaceted approach examining client models at various phases. In this survey paper, our research indicates that the to-learn data, the learning gradients, and the learned model at different stages all can be manipulated to initiate malicious attacks that range from undermining model performance, reconstructing private local data, and to inserting backdoors. We have also seen these threat are becoming more insidious. While earlier studies typically amplified malicious gradients, recent endeavors subtly alter the least significant weights in local models to bypass defense measures. This literature review provides a holistic understanding of the current FL threat landscape and highlights the importance of developing robust, efficient, and privacy-preserving defenses to ensure the safe and trusted adoption of FL in real-world applications.

We present Paint Neural Stroke Field (PaintNeSF), a novel technique to generate stylized images of a 3D scene at arbitrary novel views from multi-view 2D images. Different from existing methods which apply stylization to trained neural radiance fields at the voxel level, our approach draws inspiration from image-to-painting methods, simulating the progressive painting process of human artwork with vector strokes. We develop a palette of stylized 3D strokes from basic primitives and splines, and consider the 3D scene stylization task as a multi-view reconstruction process based on these 3D stroke primitives. Instead of directly searching for the parameters of these 3D strokes, which would be too costly, we introduce a differentiable renderer that allows optimizing stroke parameters using gradient descent, and propose a training scheme to alleviate the vanishing gradient issue. The extensive evaluation demonstrates that our approach effectively synthesizes 3D scenes with significant geometric and aesthetic stylization while maintaining a consistent appearance across different views. Our method can be further integrated with style loss and image-text contrastive models to extend its applications, including color transfer and text-driven 3D scene drawing.

Recent advancements in Large Language Models (LLMs) have exhibited notable efficacy in question-answering (QA) tasks across diverse domains. Their prowess in integrating extensive web knowledge has fueled interest in developing LLM autonomous agents. While LLMs are efficient in decoding human instructions and deriving solutions by holistically processing historical inputs, transitioning to purpose-driven agents requires a supplementary rational architecture to process multi-source information, establish reasoning chains, and prioritize critical tasks. Addressing this, we introduce \textsc{FinMe}, a novel LLM-based agent framework devised for financial decision-making, encompassing three core modules: Profiling, to outline the agent's characteristics; Memory, with layered processing, to aid the agent in assimilating realistic hierarchical financial data; and Decision-making, to convert insights gained from memories into investment decisions. Notably, \textsc{FinMe}'s memory module aligns closely with the cognitive structure of human traders, offering robust interpretability and real-time tuning. Its adjustable cognitive span allows for the retention of critical information beyond human perceptual limits, thereby enhancing trading outcomes. This framework enables the agent to self-evolve its professional knowledge, react agilely to new investment cues, and continuously refine trading decisions in the volatile financial environment. We first compare \textsc{FinMe} with various algorithmic agents on a scalable real-world financial dataset, underscoring its leading trading performance in stocks and funds. We then fine-tuned the agent's perceptual spans to achieve a significant trading performance. Collectively, \textsc{FinMe} presents a cutting-edge LLM agent framework for automated trading, boosting cumulative investment returns.

We introduce the Song Describer dataset (SDD), a new crowdsourced corpus of high-quality audio-caption pairs, designed for the evaluation of music-and-language models. The dataset consists of 1.1k human-written natural language descriptions of 706 music recordings, all publicly accessible and released under Creative Common licenses. To showcase the use of our dataset, we benchmark popular models on three key music-and-language tasks (music captioning, text-to-music generation and music-language retrieval). Our experiments highlight the importance of cross-dataset evaluation and offer insights into how researchers can use SDD to gain a broader understanding of model performance.

北京阿比特科技有限公司