亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a Robust version of the Physics-Informed Neural Networks (RPINNs) to approximate the Partial Differential Equations (PDEs) solution. Standard Physics Informed Neural Networks (PINN) takes into account the governing physical laws described by PDE during the learning process. The network is trained on a data set that consists of randomly selected points in the physical domain and its boundary. PINNs have been successfully applied to solve various problems described by PDEs with boundary conditions. The loss function in traditional PINNs is based on the strong residuals of the PDEs. This loss function in PINNs is generally not robust with respect to the true error. The loss function in PINNs can be far from the true error, which makes the training process more difficult. In particular, we do not know if the training process has already converged to the solution with the required accuracy. This is especially true if we do not know the exact solution, so we cannot estimate the true error during the training. This paper introduces a different way of defining the loss function. It incorporates the residual and the inverse of the Gram matrix, computed using the energy norm. We test our RPINN algorithm on two Laplace problems and one advection-diffusion problem in two spatial dimensions. We conclude that RPINN is a robust method. The proposed loss coincides well with the true error of the solution, as measured in the energy norm. Thus, we know if our training process goes well, and we know when to stop the training to obtain the neural network approximation of the solution of the PDE with the true error of required accuracy.

相關內容

損(sun)失函(han)(han)數(shu),在AI中亦稱呼距(ju)離函(han)(han)數(shu),度量(liang)函(han)(han)數(shu)。此(ci)處(chu)的(de)距(ju)離代表(biao)(biao)的(de)是抽象性的(de),代表(biao)(biao)真(zhen)實數(shu)據與預測數(shu)據之間的(de)誤(wu)差。損(sun)失函(han)(han)數(shu)(loss function)是用來估量(liang)你模型的(de)預測值f(x)與真(zhen)實值Y的(de)不一致程度,它是一個非負實值函(han)(han)數(shu),通常使用L(Y, f(x))來表(biao)(biao)示,損(sun)失函(han)(han)數(shu)越小,模型的(de)魯棒性就越好(hao)。損(sun)失函(han)(han)數(shu)是經驗風險(xian)(xian)函(han)(han)數(shu)的(de)核心(xin)部分,也(ye)是結(jie)構風險(xian)(xian)函(han)(han)數(shu)重要組(zu)成部分。

This article presents a novel undersampled magnetic resonance imaging (MRI) technique that leverages the concept of Neural Radiance Field (NeRF). With radial undersampling, the corresponding imaging problem can be reformulated into an image modeling task from sparse-view rendered data; therefore, a high dimensional MR image is obtainable from undersampled $k$-space data by taking advantage of implicit neural representation. A multi-layer perceptron, which is designed to output an image intensity from a spatial coordinate, learns the MR physics-driven rendering relation between given measurement data and desired image. Effective undersampling strategies for high-quality neural representation are investigated. The proposed method serves two benefits: (i) The learning is based fully on single undersampled $k$-space data, not a bunch of measured data and target image sets. It can be used potentially for diagnostic MR imaging, such as fetal MRI, where data acquisition is relatively rare or limited against diversity of clinical images while undersampled reconstruction is highly demanded. (ii) A reconstructed MR image is a scan-specific representation highly adaptive to the given $k$-space measurement. Numerous experiments validate the feasibility and capability of the proposed approach.

The increasing reliance on large language models (LLMs) such as ChatGPT in various fields emphasizes the importance of ``prompt engineering,'' a technology to improve the quality of model outputs. With companies investing significantly in expert prompt engineers and educational resources rising to meet market demand, designing high-quality prompts has become an intriguing challenge. In this paper, we propose a novel attack against LLMs, named prompt stealing attacks. Our proposed prompt stealing attack aims to steal these well-designed prompts based on the generated answers. The prompt stealing attack contains two primary modules: the parameter extractor and the prompt reconstruction. The goal of the parameter extractor is to figure out the properties of the original prompts. We first observe that most prompts fall into one of three categories: direct prompt, role-based prompt, and in-context prompt. Our parameter extractor first tries to distinguish the type of prompts based on the generated answers. Then, it can further predict which role or how many contexts are used based on the types of prompts. Following the parameter extractor, the prompt reconstructor can be used to reconstruct the original prompts based on the generated answers and the extracted features. The final goal of the prompt reconstructor is to generate the reversed prompts, which are similar to the original prompts. Our experimental results show the remarkable performance of our proposed attacks. Our proposed attacks add a new dimension to the study of prompt engineering and call for more attention to the security issues on LLMs.

Though Neural Radiance Fields (NeRF) can produce colorful 3D representations of the world by using a set of 2D images, such ability becomes non-existent when only monochromatic images are provided. Since color is necessary in representing the world, reproducing color from monochromatic radiance fields becomes crucial. To achieve this goal, instead of manipulating the monochromatic radiance fields directly, we consider it as a representation-prediction task in the Lab color space. By first constructing the luminance and density representation using monochromatic images, our prediction stage can recreate color representation on the basis of an image colorization module. We then reproduce a colorful implicit model through the representation of luminance, density, and color. Extensive experiments have been conducted to validate the effectiveness of our approaches. Our project page: //liquidammonia.github.io/color-nerf.

This paper explores the realm of abstractive text summarization through the lens of the SEASON (Salience Allocation as Guidance for Abstractive SummarizatiON) technique, a model designed to enhance summarization by leveraging salience allocation techniques. The study evaluates SEASON's efficacy by comparing it with prominent models like BART, PEGASUS, and ProphetNet, all fine-tuned for various text summarization tasks. The assessment is conducted using diverse datasets including CNN/Dailymail, SAMSum, and Financial-news based Event-Driven Trading (EDT), with a specific focus on a financial dataset containing a substantial volume of news articles from 2020/03/01 to 2021/05/06. This paper employs various evaluation metrics such as ROUGE, METEOR, BERTScore, and MoverScore to evaluate the performance of these models fine-tuned for generating abstractive summaries. The analysis of these metrics offers a thorough insight into the strengths and weaknesses demonstrated by each model in summarizing news dataset, dialogue dataset and financial text dataset. The results presented in this paper not only contribute to the evaluation of the SEASON model's effectiveness but also illuminate the intricacies of salience allocation techniques across various types of datasets.

This paper gives an overview of Software Defined Optical Networks or SDONs and how they can be implemented. It traces the evolution of Optical networks upto GMPLS and traces the idea of SDN and builds upto OpenFlow. The paper explores the need for SDONs and explains what a SDON solution could look like, including the hardware. It also seeks to explain how OpenFlow could be used as a part of this solution to overcome the limitations of GMPLS.

Can uncorrelated surrounding sound sources be used to generate extended diffuse sound fields? By definition, targets are a constant sound pressure level, a vanishing average sound intensity, uncorrelated sound waves arriving isotropically from all directions. Does this require specific sources and geometries for surrounding 2D and 3D source layouts? As methods, we employ numeric simulations and undertake a series of calculations with uncorrelated circular/spherical source layouts, or such with infinite excess dimensions, and we point out relations to potential theory. Using a radial decay 1/r^b modified by the exponent b, the representation of the resulting fields with hypergeometric functions, Gegenbauer polynomials, and circular as well as spherical harmonics yields fruitful insights. In circular layouts, waves decaying by the exponent b=1/2 synthesize ideally extended, diffuse sound fields; spherical layouts do so with b=1. None of the layouts synthesizes a perfectly constant expected sound pressure level but its flatness is acceptable. Spherical t-designs describe optimal source layouts with well-described area of high diffuseness, and non-spherical, convex layouts can be improved by restoring isotropy or by mode matching for a maximally diffuse synthesis. Theory and simulation offer a basis for loudspeaker-based synthesis of diffuse sound fields and contribute physical reasons to recent psychoacoustic findings in spatial audio.

Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.

Technology ecosystems often undergo significant transformations as they mature. For example, telephony, the Internet, and PCs all started with a single provider, but in the United States each is now served by a competitive market that uses comprehensive and universal technology standards to provide compatibility. This white paper presents our view on how the cloud ecosystem, barely over fifteen years old, could evolve as it matures.

Graph Neural Networks (GNNs) draw their strength from explicitly modeling the topological information of structured data. However, existing GNNs suffer from limited capability in capturing the hierarchical graph representation which plays an important role in graph classification. In this paper, we innovatively propose hierarchical graph capsule network (HGCN) that can jointly learn node embeddings and extract graph hierarchies. Specifically, disentangled graph capsules are established by identifying heterogeneous factors underlying each node, such that their instantiation parameters represent different properties of the same entity. To learn the hierarchical representation, HGCN characterizes the part-whole relationship between lower-level capsules (part) and higher-level capsules (whole) by explicitly considering the structure information among the parts. Experimental studies demonstrate the effectiveness of HGCN and the contribution of each component.

We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan

北京阿比特科技有限公司