Disaggregated memory is a promising approach that addresses the limitations of traditional memory architectures by enabling memory to be decoupled from compute nodes and shared across a data center. Cloud platforms have deployed such systems to improve overall system memory utilization, but performance can vary across workloads. High-performance computing (HPC) is crucial in scientific and engineering applications, where HPC machines also face the issue of underutilized memory. As a result, improving system memory utilization while understanding workload performance is essential for HPC operators. Therefore, learning the potential of a disaggregated memory system before deployment is a critical step. This paper proposes a methodology for exploring the design space of a disaggregated memory system. It incorporates key metrics that affect performance on disaggregated memory systems: memory capacity, local and remote memory access ratio, injection bandwidth, and bisection bandwidth, providing an intuitive approach to guide machine configurations based on technology trends and workload characteristics. We apply our methodology to analyze thirteen diverse workloads, including AI training, data analysis, genomics, protein, fusion, atomic nuclei, and traditional HPC bookends. Our methodology demonstrates the ability to comprehend the potential and pitfalls of a disaggregated memory system and provides motivation for machine configurations. Our results show that eleven of our thirteen applications can leverage injection bandwidth disaggregated memory without affecting performance, while one pays a rack bisection bandwidth penalty and two pay the system-wide bisection bandwidth penalty. In addition, we also show that intra-rack memory disaggregation would meet the application's memory requirement and provide enough remote memory bandwidth.
Strong stability is a property of time integration schemes for ODEs that preserve temporal monotonicity of solutions in arbitrary (inner product) norms. It is proved that explicit Runge--Kutta schemes of order $p\in 4\mathbb{N}$ with $s=p$ stages for linear autonomous ODE systems are not strongly stable, closing an open stability question from [Z.~Sun and C.-W.~Shu, SIAM J. Numer. Anal. 57 (2019), 1158--1182]. Furthermore, for explicit Runge--Kutta methods of order $p\in\mathbb{N}$ and $s>p$ stages, we prove several sufficient as well as necessary conditions for strong stability. These conditions involve both the stability function and the hypocoercivity index of the ODE system matrix. This index is a structural property combining the Hermitian and skew-Hermitian part of the system matrix.
With a rapidly increasing amount and diversity of remote sensing (RS) data sources, there is a strong need for multi-view learning modeling. This is a complex task when considering the differences in resolution, magnitude, and noise of RS data. The typical approach for merging multiple RS sources has been input-level fusion, but other - more advanced - fusion strategies may outperform this traditional approach. This work assesses different fusion strategies for crop classification in the CropHarvest dataset. The fusion methods proposed in this work outperform models based on individual views and previous fusion methods. We do not find one single fusion method that consistently outperforms all other approaches. Instead, we present a comparison of multi-view fusion methods for three different datasets and show that, depending on the test region, different methods obtain the best performance. Despite this, we suggest a preliminary criterion for the selection of fusion methods.
Environmental perception is a key element of autonomous driving because the information received from the perception module influences core driving decisions. An outstanding challenge in real-time perception for autonomous driving lies in finding the best trade-off between detection quality and latency. Major constraints on both computation and power have to be taken into account for real-time perception in autonomous vehicles. Larger object detection models tend to produce the best results, but are also slower at runtime. Since the most accurate detectors cannot run in real-time locally, we investigate the possibility of offloading computation to edge and cloud platforms, which are less resource-constrained. We create a synthetic dataset to train object detection models and evaluate different offloading strategies. Using real hardware and network simulations, we compare different trade-offs between prediction quality and end-to-end delay. Since sending raw frames over the network implies additional transmission delays, we also explore the use of JPEG and H.265 compression at varying qualities and measure their impact on prediction metrics. We show that models with adequate compression can be run in real-time on the cloud while outperforming local detection performance.
Authoring data-driven articles is a complex process requiring authors to not only analyze data for insights but also craft a cohesive narrative that effectively communicates the insights. Text generation capabilities of contemporary large language models (LLMs) present an opportunity to assist the authoring of data-driven articles and expedite the writing process. In this work, we investigate the feasibility and perceived value of leveraging LLMs to support authors of data-driven articles. We designed a prototype system, DataTales, that leverages a LLM to generate textual narratives accompanying a given chart. Using DataTales as a design probe, we conducted a qualitative study with 11 professionals to evaluate the concept, from which we distilled affordances and opportunities to further integrate LLMs as valuable data-driven article authoring assistants.
Multivariate time series long-term prediction, which aims to predict the change of data in a long time, can provide references for decision-making. Although transformer-based models have made progress in this field, they usually do not make full use of three features of multivariate time series: global information, local information, and variables correlation. To effectively mine the above three features and establish a high-precision prediction model, we propose a double sampling transformer (DSformer), which consists of the double sampling (DS) block and the temporal variable attention (TVA) block. Firstly, the DS block employs down sampling and piecewise sampling to transform the original series into feature vectors that focus on global information and local information respectively. Then, TVA block uses temporal attention and variable attention to mine these feature vectors from different dimensions and extract key information. Finally, based on a parallel structure, DSformer uses multiple TVA blocks to mine and integrate different features obtained from DS blocks respectively. The integrated feature information is passed to the generative decoder based on a multi-layer perceptron to realize multivariate time series long-term prediction. Experimental results on nine real-world datasets show that DSformer can outperform eight existing baselines.
Neural network pruning is a highly effective technique aimed at reducing the computational and memory demands of large neural networks. In this research paper, we present a novel approach to pruning neural networks utilizing Bayesian inference, which can seamlessly integrate into the training procedure. Our proposed method leverages the posterior probabilities of the neural network prior to and following pruning, enabling the calculation of Bayes factors. The calculated Bayes factors guide the iterative pruning. Through comprehensive evaluations conducted on multiple benchmarks, we demonstrate that our method achieves desired levels of sparsity while maintaining competitive accuracy.
Cooperative Intelligent Transport Systems (C-ITS) create, share and process massive amounts of data which needs to be real-time managed to enable new cooperative and autonomous driving applications. Vehicle-to-Everything (V2X) communications facilitate information exchange among vehicles and infrastructures using various protocols. By providing computer power, data storage, and low latency capabilities, Multi-access Edge Computing (MEC) has become a key enabling technology in the transport industry. The Local Dynamic Map (LDM) concept has consequently been extended to its utilisation in MECs, into an efficient, collaborative, and centralised Edge Dynamic Map (EDM) for C-ITS applications. This research presents an EDM architecture for V2X communications and implements a real-time proof-of-concept using a Time-Series Database (TSDB) engine to store vehicular message information. The performance evaluation includes data insertion and querying, assessing the system's capacity and scale for low-latency Cooperative Awareness Message (CAM) applications. Traffic simulations using SUMO have been employed to generate virtual routes for thousands of vehicles, demonstrating the transmission of virtual CAM messages to the EDM.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.