亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we provide a novel enumeration algorithm for the set of all walks of a given length within a directed graph. Our algorithm has worst-case constant delay between outputting succinct representations of such walks, after a preprocessing step requiring linear time relative to the size of the graph. We apply these results to the problem of enumerating succinct representations of the strings of a given length from a prefix-closed regular language (languages accepted by a finite automaton which has final states only).

相關內容

In this paper, we investigate the naturalness of semantic-preserving transformations and their impacts on the evaluation of NPR. To achieve this, we conduct a two-stage human study, including (1) interviews with senior software developers to establish the first concrete criteria for assessing the naturalness of code transformations and (2) a survey involving 10 developers to assess the naturalness of 1178 transformations, i.e., pairs of original and transformed programs, applied to 225 real-world bugs. Our findings reveal that nearly 60% and 20% of these transformations are considered natural and unnatural with substantially high agreement among human annotators. Furthermore, the unnatural code transformations introduce a 25.2% false alarm rate on robustness of five well-known NPR systems. Additionally, the performance of the NPR systems drops notably when evaluated using natural transformations, i.e., a drop of up to 22.9% and 23.6% in terms of the numbers of correct and plausible patches generated by these systems. These results highlight the importance of robustness testing by considering naturalness of code transformations, which unveils true effectiveness of NPR systems. Finally, we conduct an exploration study on automating the assessment of naturalness of code transformations by deriving a new naturalness metric based on Cross-Entropy. Based on our naturalness metric, we can effectively assess naturalness for code transformations automatically with an AUC of 0.7.

Audio Super-Resolution (SR) is an important topic as low-resolution recordings are ubiquitous in daily life. In this paper, we focus on the music SR task, which is challenging due to the wide frequency response and dynamic range of music. Many models are designed in time domain to jointly process magnitude and phase of audio signals. However, prior works show that approaches using Time-Domain Convolutional Neural Network (TD-CNN) tend to produce annoying artifacts in their waveform outputs, and the cause of the artifacts is yet to be identified. To the best of our knowledge, this work is the first to demonstrate the artifacts in TD-CNNs are caused by the phase distortion via a subjective experiment. We further propose Time-Domain Phase Repair (TD-PR), which uses a neural vocoder pre-trained on the wide-band data to repair the phase components in the waveform outputs of TD-CNNs. Although the vocoder and TD-CNNs are independently trained, the proposed TD-PR obtained better mean opinion score, significantly improving the perceptual quality of TD-CNN baselines. Since the proposed TD-PR only repairs the phase components of the waveforms, the improved perceptual quality in turn indicates that phase distortion has been the cause of the annoying artifacts of TD-CNNs. Moreover, a single pretrained vocoder can be directly applied to arbitrary TD-CNNs without additional adaptation. Therefore, we apply TD-PR to three TD-CNNs that have different architecture and parameter amount. Consistent improvements are observed when TD-PR is applied to all three TD-CNN baselines. Audio samples are available on the demo page.

In this paper, we seek to provide a simpler proof that the relocation problem in Ricochet Robots (Lunar Lockout with fixed geometry) is PSPACE-complete via a reduction from Finite Function Generation (FFG). Although this result was originally proven in 2003, we give a simpler reduction by utilizing the FFG problem, and put the result in context with recent publications showing that relocation is also PSPACE-complete in related models.

In this paper, we consider an active reconfigurable intelligent surface (RIS) to assist the multiuser downlink transmission in the presence of practical hardware impairments (HWIs), including the HWIs at the transceivers and the phase noise at the active RIS. The active RIS is deployed to amplify the incident signals to alleviate the multiplicative fading effect, which is a limitation in the conventional passive RIS-aided wireless systems. We aim to maximize the sum rate through jointly designing the transmit beamforming at the base station (BS), the amplification factors and the phase shifts at the active RIS. To tackle this challenging optimization problem effectively, we decouple it into two tractable subproblems. Subsequently, each subproblem is transformed into a second order cone programming problem. The block coordinate descent framework is applied to tackle them, where the transmit beamforming and the reflection coefficients are alternately designed. In addition, another efficient algorithm is presented to reduce the computational complexity. Specifically, by exploiting the majorization-minimization approach, each subproblem is reformulated into a tractable surrogate problem, whose closed-form solutions are obtained by Lagrange dual decomposition approach and element-wise alternating sequential optimization method. Simulation results validate the effectiveness of our developed algorithms, and reveal that the HWIs significantly limit the system performance of active RIS-empowered wireless communications. Furthermore, the active RIS noticeably boosts the sum rate under the same total power budget, compared with the passive RIS.

Neglecting complex aerodynamic effects hinders high-speed yet high-precision multirotor autonomy. In this paper, we present a computationally efficient learning-based model predictive controller that simultaneously optimizes a trajectory that can be tracked within the physical limits (on thrust and orientation) of the multirotor system despite unknown aerodynamic forces and adapts the control input. To do this, we leverage the well-known differential flatness property of multirotors, which allows us to transform their nonlinear dynamics into a linear model. The main limitation of current flatness-based planning and control approaches is that they often neglect dynamic feasibility. This is because these constraints are nonlinear as a result of the mapping between the input, i.e., multirotor thrust, and the flat state. In our approach, we learn a novel representation of the drag forces by learning the mapping from the flat state to the multirotor thrust vector (in a world frame) as a Gaussian Process (GP). Our proposed approach leverages the properties of GPs to develop a convex optimal controller that can be iteratively solved as a second-order cone program (SOCP). In simulation experiments, our proposed approach outperforms related model predictive controllers that do not account for aerodynamic effects on trajectory feasibility, leading to a reduction of up to 55% in absolute tracking error.

This paper presents a novel wireless image transmission paradigm that can exploit feedback from the receiver, called DeepJSCC-ViT-f. We consider a block feedback channel model, where the transmitter receives noiseless/noisy channel output feedback after each block. The proposed scheme employs a single encoder to facilitate transmission over multiple blocks, refining the receiver's estimation at each block. Specifically, the unified encoder of DeepJSCC-ViT-f can leverage the semantic information from the source image, and acquire channel state information and the decoder's current belief about the source image from the feedback signal to generate coded symbols at each block. Numerical experiments show that our DeepJSCC-ViT-f scheme achieves state-of-the-art transmission performance with robustness to noise in the feedback link. Additionally, DeepJSCC-ViT-f can adapt to the channel condition directly through feedback without the need for separate channel estimation. We further extend the scope of the DeepJSCC-ViT-f approach to include the broadcast channel, which enables the transmitter to generate broadcast codes in accordance with signal semantics and channel feedback from individual receivers.

In this paper, we introduce a two-level attention schema, Poolingformer, for long document modeling. Its first level uses a smaller sliding window pattern to aggregate information from neighbors. Its second level employs a larger window to increase receptive fields with pooling attention to reduce both computational cost and memory consumption. We first evaluate Poolingformer on two long sequence QA tasks: the monolingual NQ and the multilingual TyDi QA. Experimental results show that Poolingformer sits atop three official leaderboards measured by F1, outperforming previous state-of-the-art models by 1.9 points (79.8 vs. 77.9) on NQ long answer, 1.9 points (79.5 vs. 77.6) on TyDi QA passage answer, and 1.6 points (67.6 vs. 66.0) on TyDi QA minimal answer. We further evaluate Poolingformer on a long sequence summarization task. Experimental results on the arXiv benchmark continue to demonstrate its superior performance.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司