亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper looks at how ancient mathematicians (and especially the Pythagorean school) were faced by problems/paradoxes associated with the infinite which led them to juggle two systems of numbers: the discrete whole/rationals which were handled arithmetically and the continuous magnitude quantities which were handled geometrically. We look at how approximations and mixed numbers (whole numbers with fractions) helped develop the arithmetization of geometry and the development of mathematical analysis and real numbers.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

We propose a novel methodology to solve a key eigenvalue optimization problem which arises in the contractivity analysis of neural ODEs. When looking at contractivity properties of a one layer weight-tied neural ODE $\dot{u}(t)=\sigma(Au(t)+b)$ (with $u,b \in {\mathbb R}^n$, $A$ is a given $n \times n$ matrix, $\sigma : {\mathbb R} \to {\mathbb R}^+$ denotes an activation function and for a vector $z \in {\mathbb R}^n$, $\sigma(z) \in {\mathbb R}^n$ has to be interpreted entry-wise), we are led to study the logarithmic norm of a set of products of type $D A$, where $D$ is a diagonal matrix such that ${\mathrm{diag}}(D) \in \sigma'({\mathbb R}^n)$. Specifically, given a real number $c$ (usually $c=0$), the problem consists in finding the largest positive interval $\chi\subseteq \mathbb [0,\infty)$ such that the logarithmic norm $\mu(DA) \le c$ for all diagonal matrices $D$ with $D_{ii}\in \chi$. We propose a two-level nested methodology: an inner level where, for a given $\chi$, we compute an optimizer $D^\star(\chi)$ by a gradient system approach, and an outer level where we tune $\chi$ so that the value $c$ is reached by $\mu(D^\star(\chi)A)$. We extend the proposed two-level approach to the general multilayer, and possibly time-dependent, case $\dot{u}(t) = \sigma( A_k(t) \ldots \sigma ( A_{1}(t) u(t) + b_{1}(t) ) \ldots + b_{k}(t) )$ and we propose several numerical examples to illustrate its behaviour, including its stabilizing performance on a one-layer neural ODE applied to the classification of the MNIST handwritten digits dataset.

In this paper, we apply quasi-Monte Carlo (QMC) methods with an initial preintegration step to estimate cumulative distribution functions and probability density functions in uncertainty quantification (UQ). The distribution and density functions correspond to a quantity of interest involving the solution to an elliptic partial differential equation (PDE) with a lognormally distributed coefficient and a normally distributed source term. There is extensive previous work on using QMC to compute expected values in UQ, which have proven very successful in tackling a range of different PDE problems. However, the use of QMC for density estimation applied to UQ problems will be explored here for the first time. Density estimation presents a more difficult challenge compared to computing the expected value due to discontinuities present in the integral formulations of both the distribution and density. Our strategy is to use preintegration to eliminate the discontinuity by integrating out a carefully selected random parameter, so that QMC can be used to approximate the remaining integral. First, we establish regularity results for the PDE quantity of interest that are required for smoothing by preintegration to be effective. We then show that an $N$-point lattice rule can be constructed for the integrands corresponding to the distribution and density, such that after preintegration the QMC error is of order $\mathcal{O}(N^{-1+\epsilon})$ for arbitrarily small $\epsilon>0$. This is the same rate achieved for computing the expected value of the quantity of interest. Numerical results are presented to reaffirm our theory.

Hesitant fuzzy sets are widely used in certain instances of uncertainty and hesitation. In sets, the inclusion relationship is an important and foundational definition. Thus, as a kind of set, hesitant fuzzy sets require an explicit definition of inclusion relationship. Based on the hesitant fuzzy membership degree of discrete form, several kinds of inclusion relationships for hesitant fuzzy sets are proposed in this work. Then, some foundational propositions of hesitant fuzzy sets are presented, along with propositions of families of hesitant fuzzy sets. Some foundational propositions of hesitant fuzzy information systems are proposed with respect to parameter reductions and an example and an algorithm are given to illustrate the processes of parameter reduction. Finally, a multi-strength intelligent classifier is proposed to make health state diagnoses for complex systems.

In this article we aim to obtain the Fisher Riemann geodesics for nonparametric families of probability densities as a weak limit of the parametric case with increasing number of parameters.

This paper introduces a novel evaluation framework for Large Language Models (LLMs) such as Llama-2 and Mistral, focusing on the adaptation of Precision and Recall metrics from image generation to text generation. This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora. By conducting a comprehensive evaluation of state-of-the-art language models, the study reveals significant insights into their performance on open-ended generation tasks, which are not adequately captured by traditional benchmarks. The findings highlight a trade-off between the quality and diversity of generated samples, particularly when models are fine-tuned with human feedback. This work extends the toolkit for distribution-based NLP evaluation, offering insights into the practical capabilities and challenges faced by current LLMs in generating diverse and high-quality text.

Despite great performance on many tasks, language models (LMs) still struggle with reasoning, sometimes providing responses that cannot possibly be true because they stem from logical incoherence. We call such responses \textit{strong hallucinations} and prove that they follow from an LM's computation of its internal representations for logical operators and outputs from those representations. Focusing on negation, we provide a novel solution in which negation is treated not as another element of a latent representation, but as \textit{an operation over an LM's latent representations that constrains how they may evolve}. We show that our approach improves model performance in cloze prompting and natural language inference tasks with negation without requiring training on sparse negative data.

We propose a simple empirical representation of expectations such that: For a number of samples above a certain threshold, drawn from any probability distribution with finite fourth-order statistic, the proposed estimator outperforms the empirical average when tested against the actual population, with respect to the quadratic loss. For datasets smaller than this threshold, the result still holds, but for a class of distributions determined by their first four statistics. Our approach leverages the duality between distributionally robust and risk-averse optimization.

This paper proposes a novel approach to improve the training efficiency and the generalization performance of Feed Forward Neural Networks (FFNNs) resorting to an optimal rescaling of input features (OFR) carried out by a Genetic Algorithm (GA). The OFR reshapes the input space improving the conditioning of the gradient-based algorithm used for the training. Moreover, the scale factors exploration entailed by GA trials and selection corresponds to different initialization of the first layer weights at each training attempt, thus realizing a multi-start global search algorithm (even though restrained to few weights only) which fosters the achievement of a global minimum. The approach has been tested on a FFNN modeling the outcome of a real industrial process (centerless grinding).

This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司