亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Brain-computer interfaces (BCIs) use brain signals such as electroencephalography to reflect user intention and enable two-way communication between computers and users. BCI technology has recently received much attention in healthcare applications, such as neurorehabilitation and diagnosis. BCI applications can also control external devices using only brain activity, which can help people with physical or mental disabilities, especially those suffering from neurological and neuromuscular diseases such as stroke and amyotrophic lateral sclerosis. Motor imagery (MI) has been widely used for BCI-based device control, but we adopted intuitive visual motion imagery to overcome the weakness of MI. In this study, we developed a three-dimensional (3D) BCI training platform to induce users to imagine upper-limb movements used in real-life activities (picking up a cell phone, pouring water, opening a door, and eating food). We collected intuitive visual motion imagery data and proposed a deep learning network based on functional connectivity as a mind-reading technique. As a result, the proposed network recorded a high classification performance on average (71.05%). Furthermore, we applied the leave-one-subject-out approach to confirm the possibility of improvements in subject-independent classification performance. This study will contribute to the development of BCI-based healthcare applications for rehabilitation, such as robotic arms and wheelchairs, or assist daily life.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議(yi)。 Publisher:IFIP。 SIT:

Gaussian processes (GPs) are commonly used for geospatial analysis, but they suffer from high computational complexity when dealing with massive data. For instance, the log-likelihood function required in estimating the statistical model parameters for geospatial data is a computationally intensive procedure that involves computing the inverse of a covariance matrix with size n X n, where n represents the number of geographical locations. As a result, in the literature, studies have shifted towards approximation methods to handle larger values of n effectively while maintaining high accuracy. These methods encompass a range of techniques, including low-rank and sparse approximations. Vecchia approximation is one of the most promising methods to speed up evaluating the log-likelihood function. This study presents a parallel implementation of the Vecchia approximation, utilizing batched matrix computations on contemporary GPUs. The proposed implementation relies on batched linear algebra routines to efficiently execute individual conditional distributions in the Vecchia algorithm. We rely on the KBLAS linear algebra library to perform batched linear algebra operations, reducing the time to solution compared to the state-of-the-art parallel implementation of the likelihood estimation operation in the ExaGeoStat software by up to 700X, 833X, 1380X on 32GB GV100, 80GB A100, and 80GB H100 GPUs, respectively. We also successfully manage larger problem sizes on a single NVIDIA GPU, accommodating up to 1M locations with 80GB A100 and H100 GPUs while maintaining the necessary application accuracy. We further assess the accuracy performance of the implemented algorithm, identifying the optimal settings for the Vecchia approximation algorithm to preserve accuracy on two real geospatial datasets: soil moisture data in the Mississippi Basin area and wind speed data in the Middle East.

Foundation models, such as Large language Models (LLMs), have attracted significant amount of interest due to their large number of applications. Existing works show that appropriate prompt design, such as Chain-of-Thoughts, can unlock LLM's powerful capacity in diverse areas. However, when handling tasks involving repetitive sub-tasks and/or deceptive contents, such as arithmetic calculation and article-level fake news detection, existing prompting strategies either suffers from insufficient expressive power or intermediate errors triggered by hallucination. To make LLM more discerning to such intermediate errors, we propose to guide LLM with a Divide-and-Conquer program that simultaneously ensures superior expressive power and disentangles task decomposition, sub-task resolution, and resolution assembly process. Theoretic analysis reveals that our strategy can guide LLM to extend the expressive power of fixed-depth Transformer. Experiments indicate that our proposed method can achieve better performance than typical prompting strategies in tasks bothered by intermediate errors and deceptive contents, such as large integer multiplication, hallucination detection and misinformation detection.

Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions. In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation. Unlike traditional feature-based approaches, vision-based methods depend much less on heuristics and predefined features, bringing promising potentials for end-to-end learning and optimization of traffic signals. Thus, we introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking by integrating the microscopic traffic flow provided in SUMO into the driving simulator MetaDrive. This proposed framework offers a versatile traffic environment for in-depth analysis and comprehensive evaluation of traffic signal controllers across diverse traffic conditions and scenarios. We establish and compare baseline algorithms including both traditional and Reinforecment Learning (RL) approaches. This work sheds insights into the design and development of vision-based TSC approaches and open up new research opportunities. All the code and baselines will be made publicly available.

The capability to generate simulation-ready garment models from 3D shapes of clothed humans will significantly enhance the interpretability of captured geometry of real garments, as well as their faithful reproduction in the virtual world. This will have notable impact on fields like shape capture in social VR, and virtual try-on in the fashion industry. To align with the garment modeling process standardized by the fashion industry as well as cloth simulation softwares, it is required to recover 2D patterns. This involves an inverse garment design problem, which is the focus of our work here: Starting with an arbitrary target garment geometry, our system estimates an animatable garment model by automatically adjusting its corresponding 2D template pattern, along with the material parameters of the physics-based simulation (PBS). Built upon a differentiable cloth simulator, the optimization process is directed towards minimizing the deviation of the simulated garment shape from the target geometry. Moreover, our produced patterns meet manufacturing requirements such as left-to-right-symmetry, making them suited for reverse garment fabrication. We validate our approach on examples of different garment types, and show that our method faithfully reproduces both the draped garment shape and the sewing pattern.

Multiple extended target tracking (ETT) has attracted increasing interest due to the development of high-precision LiDAR and radar sensors in automotive applications. For LiDAR point cloud-based vehicle tracking, this paper presents a probabilistic measurement-region association (PMRA) ETT model, which can depict the complex measurement distribution by dividing the target extent into different regions. The PMRA model overcomes the drawbacks of previous data-region association (DRA) models by eliminating the approximation error of constrained estimation and using continuous integrals to more reliably calculate the association probabilities. Furthermore, the PMRA model is integrated with the Poisson multi-Bernoulli mixture (PMBM) filter for tracking multiple vehicles. Simulation results illustrate the superior estimation accuracy of the proposed PMRA-PMBM filter in terms of both positions and extents of the vehicles comparing with PMBM filters using the gamma Gaussian inverse Wishart and DRA implementations.

Multi-modal semantic understanding requires integrating information from different modalities to extract users' real intention behind words. Most previous work applies a dual-encoder structure to separately encode image and text, but fails to learn cross-modal feature alignment, making it hard to achieve cross-modal deep information interaction. This paper proposes a novel CLIP-guided contrastive-learning-based architecture to perform multi-modal feature alignment, which projects the features derived from different modalities into a unified deep space. On multi-modal sarcasm detection (MMSD) and multi-modal sentiment analysis (MMSA) tasks, the experimental results show that our proposed model significantly outperforms several baselines, and our feature alignment strategy brings obvious performance gain over models with different aggregating methods and models even enriched with knowledge. More importantly, our model is simple to implement without using task-specific external knowledge, and thus can easily migrate to other multi-modal tasks. Our source codes are available at //github.com/ChangKe123/CLFA.

User alignment is crucial for adapting general-purpose language models (LMs) to downstream tasks, but human annotations are often not available for all types of instructions, especially those with customized constraints. We observe that user instructions typically contain constraints. While assessing response quality in terms of the whole instruction is often costly, efficiently evaluating the satisfaction rate of constraints is feasible. We investigate common constraints in NLP tasks, categorize them into three classes based on the types of their arguments, and propose a unified framework, ACT (Aligning to ConsTraints), to automatically produce supervision signals for user alignment with constraints. Specifically, ACT uses constraint verifiers, which are typically easy to implement in practice, to compute constraint satisfaction rate (CSR) of each response. It samples multiple responses for each prompt and collect preference labels based on their CSR automatically. Subsequently, ACT adapts the LM to the target task through a ranking-based learning process. Experiments on fine-grained entity typing, abstractive summarization, and temporal question answering show that ACT is able to enhance LMs' capability to adhere to different classes of constraints, thereby improving task performance. Further experiments show that the constraint-following capabilities are transferable.

Few-shot relation extraction involves identifying the type of relationship between two specific entities within a text, using a limited number of annotated samples. A variety of solutions to this problem have emerged by applying meta-learning and neural graph techniques which typically necessitate a training process for adaptation. Recently, the strategy of in-context learning has been demonstrating notable results without the need of training. Few studies have already utilized in-context learning for zero-shot information extraction. Unfortunately, the evidence for inference is either not considered or implicitly modeled during the construction of chain-of-thought prompts. In this paper, we propose a novel approach for few-shot relation extraction using large language models, named CoT-ER, chain-of-thought with explicit evidence reasoning. In particular, CoT-ER first induces large language models to generate evidences using task-specific and concept-level knowledge. Then these evidences are explicitly incorporated into chain-of-thought prompting for relation extraction. Experimental results demonstrate that our CoT-ER approach (with 0% training data) achieves competitive performance compared to the fully-supervised (with 100% training data) state-of-the-art approach on the FewRel1.0 and FewRel2.0 datasets.

Controlling robotic manipulators via visual feedback requires a known coordinate frame transformation between the robot and the camera. Uncertainties in mechanical systems as well as camera calibration create errors in this coordinate frame transformation. These errors result in poor localization of robotic manipulators and create a significant challenge for applications that rely on precise interactions between manipulators and the environment. In this work, we estimate the camera-to-base transform and joint angle measurement errors for surgical robotic tools using an image based insertion-shaft detection algorithm and probabilistic models. We apply our proposed approach in both a structured environment as well as an unstructured environment and measure to demonstrate the efficacy of our methods.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司