Multilingual training is effective in improving low-resource ASR, which may partially be explained by phonetic representation sharing between languages. In end-to-end (E2E) ASR systems, graphemes are often used as basic modeling units, however graphemes may not be ideal for multilingual phonetic sharing. In this paper, we leverage International Phonetic Alphabet (IPA) based language-universal phonetic model to improve low-resource ASR performances, for the first time within the attention encoder-decoder architecture. We propose an adaptation method on the phonetic IPA model to further improve the proposed approach on extreme low-resource languages. Experiments carried out on the open-source MLS corpus and our internal databases show our approach outperforms baseline monolingual models and most state-of-the-art works. Our main approach and adaptation are effective on extremely low-resource languages, even within domain- and language-mismatched scenarios.
As opposed to general English, many concepts in biomedical terminology have been designed in recent history by biomedical professionals with the goal of being precise and concise. This is often achieved by concatenating meaningful biomedical morphemes to create new semantic units. Nevertheless, most modern biomedical language models (LMs) are pre-trained using standard domain-specific tokenizers derived from large scale biomedical corpus statistics without explicitly leveraging the agglutinating nature of biomedical language. In this work, we first find that standard open-domain and biomedical tokenizers are largely unable to segment biomedical terms into meaningful components. Therefore, we hypothesize that using a tokenizer which segments biomedical terminology more accurately would enable biomedical LMs to improve their performance on downstream biomedical NLP tasks, especially ones which involve biomedical terms directly such as named entity recognition (NER) and entity linking. Surprisingly, we find that pre-training a biomedical LM using a more accurate biomedical tokenizer does not improve the entity representation quality of a language model as measured by several intrinsic and extrinsic measures such as masked language modeling prediction (MLM) accuracy as well as NER and entity linking performance. These quantitative findings, along with a case study which explores entity representation quality more directly, suggest that the biomedical pre-training process is quite robust to instances of sub-optimal tokenization.
Acoustic word embeddings (AWEs) are fixed-dimensional vector representations of speech segments that encode phonetic content so that different realisations of the same word have similar embeddings. In this paper we explore semantic AWE modelling. These AWEs should not only capture phonetics but also the meaning of a word (similar to textual word embeddings). We consider the scenario where we only have untranscribed speech in a target language. We introduce a number of strategies leveraging a pre-trained multilingual AWE model -- a phonetic AWE model trained on labelled data from multiple languages excluding the target. Our best semantic AWE approach involves clustering word segments using the multilingual AWE model, deriving soft pseudo-word labels from the cluster centroids, and then training a Skipgram-like model on the soft vectors. In an intrinsic word similarity task measuring semantics, this multilingual transfer approach outperforms all previous semantic AWE methods. We also show -- for the first time -- that AWEs can be used for downstream semantic query-by-example search.
Vision-language tasks, such as VQA, SNLI-VE, and VCR are challenging because they require the model's reasoning ability to understand the semantics of the visual world and natural language. Supervised methods working for vision-language tasks have been well-studied. However, solving these tasks in a zero-shot setting is less explored. Since Contrastive Language-Image Pre-training (CLIP) has shown remarkable zero-shot performance on image-text matching, previous works utilized its strong zero-shot ability by converting vision-language tasks into an image-text matching problem, and they mainly consider global-level matching (e.g., the whole image or sentence). However, we find visual and textual fine-grained information, e.g., keywords in the sentence and objects in the image, can be fairly informative for semantics understanding. Inspired by this, we propose a unified framework to take advantage of the fine-grained information for zero-shot vision-language learning, covering multiple tasks such as VQA, SNLI-VE, and VCR. Our experiments show that our framework outperforms former zero-shot methods on VQA and achieves substantial improvement on SNLI-VE and VCR. Furthermore, our ablation studies confirm the effectiveness and generalizability of our proposed method. Code will be available at //github.com/ThreeSR/UniFine
Connectionist Temporal Classification (CTC) models are popular for their balance between speed and performance for Automatic Speech Recognition (ASR). However, these CTC models still struggle in other areas, such as personalization towards custom words. A recent approach explores Contextual Adapters, wherein an attention-based biasing model for CTC is used to improve the recognition of custom entities. While this approach works well with enough data, we showcase that it isn't an effective strategy for low-resource languages. In this work, we propose a supervision loss for smoother training of the Contextual Adapters. Further, we explore a multilingual strategy to improve performance with limited training data. Our method achieves 48% F1 improvement in retrieving unseen custom entities for a low-resource language. Interestingly, as a by-product of training the Contextual Adapters, we see a 5-11% Word Error Rate (WER) reduction in the performance of the base CTC model as well.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
For languages with no annotated resources, transferring knowledge from rich-resource languages is an effective solution for named entity recognition (NER). While all existing methods directly transfer from source-learned model to a target language, in this paper, we propose to fine-tune the learned model with a few similar examples given a test case, which could benefit the prediction by leveraging the structural and semantic information conveyed in such similar examples. To this end, we present a meta-learning algorithm to find a good model parameter initialization that could fast adapt to the given test case and propose to construct multiple pseudo-NER tasks for meta-training by computing sentence similarities. To further improve the model's generalization ability across different languages, we introduce a masking scheme and augment the loss function with an additional maximum term during meta-training. We conduct extensive experiments on cross-lingual named entity recognition with minimal resources over five target languages. The results show that our approach significantly outperforms existing state-of-the-art methods across the board.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset.
We study the problem of named entity recognition (NER) from electronic medical records, which is one of the most fundamental and critical problems for medical text mining. Medical records which are written by clinicians from different specialties usually contain quite different terminologies and writing styles. The difference of specialties and the cost of human annotation makes it particularly difficult to train a universal medical NER system. In this paper, we propose a label-aware double transfer learning framework (La-DTL) for cross-specialty NER, so that a medical NER system designed for one specialty could be conveniently applied to another one with minimal annotation efforts. The transferability is guaranteed by two components: (i) we propose label-aware MMD for feature representation transfer, and (ii) we perform parameter transfer with a theoretical upper bound which is also label aware. We conduct extensive experiments on 12 cross-specialty NER tasks. The experimental results demonstrate that La-DTL provides consistent accuracy improvement over strong baselines. Besides, the promising experimental results on non-medical NER scenarios indicate that La-DTL is potential to be seamlessly adapted to a wide range of NER tasks.