亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The problem of packing equal spheres in a spherical container is a classic global optimization problem, which has attracted enormous studies in academia and found various applications in industry. This problem is computationally challenging, and many efforts focus on small-scale instances with the number of spherical items less than 200 in the literature. In this work, we propose an efficient local search heuristic algorithm named solution space exploring and descent for solving this problem, which can quantify the solution's quality to determine the number of exploring actions and quickly discover a high-quality solution. Besides, we propose an adaptive neighbor object maintenance method to speed up the convergence of the continuous optimization process and reduce the time consumption. Computational experiments on a large number of benchmark instances with $5 \leq n \leq 400$ spherical items show that our algorithm significantly outperforms the state-of-the-art algorithm. In particular, it improves the 274 best-known results and matches the 84 best-known results out of the 396 well-known benchmark instances.

相關內容

In this paper, we devise a scheme for kernelizing, in sublinear space and polynomial time, various problems on planar graphs. The scheme exploits planarity to ensure that the resulting algorithms run in polynomial time and use O((sqrt(n) + k) log n) bits of space, where n is the number of vertices in the input instance and k is the intended solution size. As examples, we apply the scheme to Dominating Set and Vertex Cover. For Dominating Set, we also show that a well-known kernelization algorithm due to Alber et al. (JACM 2004) can be carried out in polynomial time and space O(k log n). Along the way, we devise restricted-memory procedures for computing region decompositions and approximating the aforementioned problems, which might be of independent interest.

There has been growing interest in implementing massive MIMO systems by one-bit analog-to-digital converters (ADCs), which have the benefit of reducing the power consumption and hardware complexity. One-bit MIMO detection arises in such a scenario. It aims to detect the multiuser signals from the one-bit quantized received signals in an uplink channel. In this paper, we consider one-bit maximum-likelihood (ML) MIMO detection in massive MIMO systems, which amounts to solving a large-scale nonlinear integer programming problem. We propose an efficient global algorithm for solving the one-bit ML MIMO detection problem. We first reformulate the problem as a mixed integer linear programming (MILP) problem that has a massive number of linear constraints. The massive number of linear constraints raises computational challenges. To solve the MILP problem efficiently, we custom build a light-weight branch-and-bound tree search algorithm, where the linear constraints are incrementally added during the tree search procedure and only small-size linear programming subproblems need to be solved at each iteration. We provide simulation results to demonstrate the efficiency of the proposed method.

To boost the secrecy rate (SR) of the conventional directional modulation (DM) network and overcome the double fading effect of the cascaded channels of passive intelligent reflecting surface (IRS), a novel active IRS-assisted DM system is investigated in this paper. Aiming to maximize the SR, two power allocation (PA) strategies, called maximizing SR based on fractional programming (FP) (Max-SR-FP) and maximizing SR based on derivative operation (DO) (Max-SR-DO), are proposed by jointly designing the PA factors, beamforming vector, and phase shift matrix of IRS, subject to the power constraint at IRS. The former with higher performance employs the FP and successive convex approximation (SCA) algorithms to design the confidential message PA factor and the total PA factor at the base station, and the SCA algorithm is also utilized to design the beamforming vector and the phase shift matrix of the IRS. The latter with lower complexity adopts the DO, and equal amplitude reflecting (EAR) and general power iterative (GPI) methods to solve them, respectively. The simulation results show that compared with the benchmark PA schemes, both the proposed PA schemes achieve a significant SR performance improvement. Moreover, the SR gap between two proposed schemes decreases gradually with the increases of the number of IRS phase shift element.

Smart contracts play a vital role in the Ethereum ecosystem. Due to the prevalence of kinds of security issues in smart contracts, the smart contract verification is urgently needed, which is the process of matching a smart contract's source code to its on-chain bytecode for gaining mutual trust between smart contract developers and users. Although smart contract verification services are embedded in both popular Ethereum browsers (e.g., Etherscan and Blockscout) and official platforms (i.e., Sourcify), and gain great popularity in the ecosystem, their security and trustworthiness remain unclear. To fill the void, we present the first comprehensive security analysis of smart contract verification services in the wild. By diving into the detailed workflow of existing verifiers, we have summarized the key security properties that should be met, and observed eight types of vulnerabilities that can break the verification. Further, we propose a series of detection and exploitation methods to reveal the presence of vulnerabilities in the most popular services, and uncover 19 exploitable vulnerabilities in total. All the studied smart contract verification services can be abused to help spread malicious smart contracts, and we have already observed the presence of using this kind of tricks for scamming by attackers. It is hence urgent for our community to take actions to detect and mitigate security issues related to smart contract verification, a key component of the Ethereum smart contract ecosystem.

Neural network quantum state (NNQS) has emerged as a promising candidate for quantum many-body problems, but its practical applications are often hindered by the high cost of sampling and local energy calculation. We develop a high-performance NNQS method for \textit{ab initio} electronic structure calculations. The major innovations include: (1) A transformer based architecture as the quantum wave function ansatz; (2) A data-centric parallelization scheme for the variational Monte Carlo (VMC) algorithm which preserves data locality and well adapts for different computing architectures; (3) A parallel batch sampling strategy which reduces the sampling cost and achieves good load balance; (4) A parallel local energy evaluation scheme which is both memory and computationally efficient; (5) Study of real chemical systems demonstrates both the superior accuracy of our method compared to state-of-the-art and the strong and weak scalability for large molecular systems with up to $120$ spin orbitals.

Graph entity dependencies (GEDs) are novel graph constraints, unifying keys and functional dependencies, for property graphs. They have been found useful in many real-world data quality and data management tasks, including fact checking on social media networks and entity resolution. In this paper, we study the discovery problem of GEDs -- finding a minimal cover of valid GEDs in a given graph data. We formalise the problem, and propose an effective and efficient approach to overcome major bottlenecks in GED discovery. In particular, we leverage existing graph partitioning algorithms to enable fast GED-scope discovery, and employ effective pruning strategies over the prohibitively large space of candidate dependencies. Furthermore, we define an interestingness measure for GEDs based on the minimum description length principle, to score and rank the mined cover set of GEDs. Finally, we demonstrate the scalability and effectiveness of our GED discovery approach through extensive experiments on real-world benchmark graph data sets; and present the usefulness of the discovered rules in different downstream data quality management applications.

We study sampling problems associated with potentials that lack smoothness. The potentials can be either convex or non-convex. Departing from the standard smooth setting, the potentials are only assumed to be weakly smooth or non-smooth, or the summation of multiple such functions. We develop a sampling algorithm that resembles proximal algorithms in optimization for this challenging sampling task. Our algorithm is based on a special case of Gibbs sampling known as the alternating sampling framework (ASF). The key contribution of this work is a practical realization of the ASF based on rejection sampling for both non-convex and convex potentials that are not necessarily smooth. In almost all the cases of sampling considered in this work, our proximal sampling algorithm achieves better complexity than all existing methods.

The use of smart devices (e.g., smartphones, smartwatches) and other wearables to deliver digital interventions to improve health outcomes has grown significantly in the past few years. Mobile health (mHealth) systems are excellent tools for the delivery of adaptive interventions that aim to provide the right type and amount of support, at the right time, by adapting to an individual's changing context. Micro-randomized trials (MRTs) are an increasingly common experimental design that is the main source for data-driven evidence of mHealth intervention effectiveness. To assess time-varying causal effect moderation in an MRT, individuals are intensively randomized to receive treatment over time. In addition, measurements, including individual characteristics, and context are also collected throughout the study. The effective utilization of covariate information to improve inferences regarding causal effects has been well-established in the context of randomized control trials (RCTs), where covariate adjustment is applied to leverage baseline data to address chance imbalances and improve the asymptotic efficiency of causal effect estimation. However, the application of this approach to longitudinal data, such as MRTs, has not been thoroughly explored. Recognizing the connection to Neyman Orthogonality, we propose a straightforward and intuitive method to improve the efficiency of moderated causal excursion effects by incorporating auxiliary variables. We compare the robust standard errors of our method with those of the benchmark method. The efficiency gain of our approach is demonstrated through simulation studies and an analysis of data from the Intern Health Study (NeCamp et al., 2020).

This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions

Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.

北京阿比特科技有限公司