亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Context: New scientific evidence continuously arises with advances in Software Engineering (SE) research. Conventionally, Systematic Literature Reviews (SLRs) are not updated or updated intermittently, leaving gaps between updates, during which time the SLR may be missing crucial new evidence. Goal: We propose and evaluate a concept and process called Continuous Systematic Literature Review (CSLR) in SE. Method: To elaborate on the CSLR concept and process, we performed a synthesis of evidence by conducting a meta-ethnography, addressing knowledge from varied research areas. Furthermore, we conducted a case study to evaluate the CSLR process. Results: We describe the resulting CSLR process in BPMN format. The case study results provide indications on the importance and feasibility of applying CSLR in practice to continuously update SLR evidence in SE. Conclusion: The CSLR concept and process provide a feasible and systematic way to continuously incorporate new evidence into SLRs, supporting trustworthy and up-to-date evidence for SLRs in SE.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

We revisit the classic signal-to-symbol barrier in light of the remarkable ability of deep neural networks to generate realistic synthetic data. DeepFakes and spoofing highlight the feebleness of the link between physical reality and its abstract representation, whether learned by a digital computer or a biological agent. Starting from a widely applicable definition of abstract concept, we show that standard feed-forward architectures cannot capture but trivial concepts, regardless of the number of weights and the amount of training data, despite being extremely effective classifiers. On the other hand, architectures that incorporate recursion can represent a significantly larger class of concepts, but may still be unable to learn them from a finite dataset. We qualitatively describe the class of concepts that can be "understood" by modern architectures trained with variants of stochastic gradient descent, using a (free energy) Lagrangian to measure information complexity. Even if a concept has been understood, however, a network has no means of communicating its understanding to an external agent, except through continuous interaction and validation. We then characterize physical objects as abstract concepts and use the previous analysis to show that physical objects can be encoded by finite architectures. However, to understand physical concepts, sensors must provide persistently exciting observations, for which the ability to control the data acquisition process is essential (active perception). The importance of control depends on the modality, benefiting visual more than acoustic or chemical perception. Finally, we conclude that binding physical entities to digital identities is possible in finite time with finite resources, solving in principle the signal-to-symbol barrier problem, but we highlight the need for continuous validation.

Microservice system solutions are driving digital transformation; however, fundamental tools and system perspectives are missing to better observe, understand, and manage these systems, their properties, and their dependencies. Microservices architecture leads towards decentralization, which implies many advantages to system operation; it, however, brings challenges to their development. Microservice systems often lack a system-centric perspective that would help engineers better cope with system evolution and quality assessment. In this work, we explored microservice-specific architecture reconstruction based on static analysis. Such reconstruction typically results in system models to visualize selected system-centric perspectives. Conventional models involve 2D methods; however, these methods are limited in utility when services proliferate. We considered various architectural perspectives relevant to microservices and assessed the relevancy of the traditional method, comparing it to alternative data visualization using 3D space. As a representative of the 3D method, we considered a 3D graph model presented in augmented reality. To begin testing the feasibility of deriving such perspectives from microservice systems, we developed and implemented prototype tools for software architecture reconstruction and visualization of compared perspectives. Using these prototypes, we performed a small user study with software practitioners to highlight the potentials and limitations of these innovative visualizations used for common practitioner reasoning and tasks.

We study policy gradient (PG) for reinforcement learning in continuous time and space under the regularized exploratory formulation developed by Wang et al. (2020). We represent the gradient of the value function with respect to a given parameterized stochastic policy as the expected integration of an auxiliary running reward function that can be evaluated using samples and the current value function. This effectively turns PG into a policy evaluation (PE) problem, enabling us to apply the martingale approach recently developed by Jia and Zhou (2021) for PE to solve our PG problem. Based on this analysis, we propose two types of the actor-critic algorithms for RL, where we learn and update value functions and policies simultaneously and alternatingly. The first type is based directly on the aforementioned representation which involves future trajectories and hence is offline. The second type, designed for online learning, employs the first-order condition of the policy gradient and turns it into martingale orthogonality conditions. These conditions are then incorporated using stochastic approximation when updating policies. Finally, we demonstrate the algorithms by simulations in two concrete examples.

Are intelligent machines really intelligent? Is the underlying philosophical concept of intelligence satisfactory for describing how the present systems work? Is understanding a necessary and sufficient condition for intelligence? If a machine could understand, should we attribute subjectivity to it? This paper addresses the problem of deciding whether the so-called "intelligent machines" are capable of understanding, instead of merely processing signs. It deals with the relationship between syntaxis and semantics. The main thesis concerns the inevitability of semantics for any discussion about the possibility of building conscious machines, condensed into the following two tenets: "If a machine is capable of understanding (in the strong sense), then it must be capable of combining rules and intuitions"; "If semantics cannot be reduced to syntaxis, then a machine cannot understand." Our conclusion states that it is not necessary to attribute understanding to a machine in order to explain its exhibited "intelligent" behavior; a merely syntactic and mechanistic approach to intelligence as a task-solving tool suffices to justify the range of operations that it can display in the current state of technological development.

Implicit Processes (IPs) represent a flexible framework that can be used to describe a wide variety of models, from Bayesian neural networks, neural samplers and data generators to many others. IPs also allow for approximate inference in function-space. This change of formulation solves intrinsic degenerate problems of parameter-space approximate inference concerning the high number of parameters and their strong dependencies in large models. For this, previous works in the literature have attempted to employ IPs both to set up the prior and to approximate the resulting posterior. However, this has proven to be a challenging task. Existing methods that can tune the prior IP result in a Gaussian predictive distribution, which fails to capture important data patterns. By contrast, methods producing flexible predictive distributions by using another IP to approximate the posterior process cannot tune the prior IP to the observed data. We propose here the first method that can accomplish both goals. For this, we rely on an inducing-point representation of the prior IP, as often done in the context of sparse Gaussian processes. The result is a scalable method for approximate inference with IPs that can tune the prior IP parameters to the data, and that provides accurate non-Gaussian predictive distributions.

In practically every industry today, artificial intelligence is one of the most effective ways for machines to assist humans. Since its inception, a large number of researchers throughout the globe have been pioneering the application of artificial intelligence in medicine. Although artificial intelligence may seem to be a 21st-century concept, Alan Turing pioneered the first foundation concept in the 1940s. Artificial intelligence in medicine has a huge variety of applications that researchers are continually exploring. The tremendous increase in computer and human resources has hastened progress in the 21st century, and it will continue to do so for many years to come. This review of the literature will highlight the emerging field of artificial intelligence in medicine and its current level of development.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

北京阿比特科技有限公司