Algorithmic meta-theorems state that problems that can be formalized in a fixed logic can be solved efficiently on classes of structures with certain properties. A prominent example is Courcelle's Theorem, which states that all problems expressible in monadic second-order logic can be solved efficiently on structures of small treewidth. Such theorems are usually proven by a generic algorithm for the model-checking problem of the given logic, which is often complex and rarely leads to highly efficient solutions. Alternatively, we can solve the model-checking problem by grounding the given logic to propositional logic, for which dedicated solvers are available. Such encodings will, however, usually not preserve the input's treewidth. This paper investigates whether all problems definable in monadic second-order logic can efficiently be encoded into SAT such that the input's treewidth bounds the treewidth of the resulting formula. We answer this in the affirmative and, hence, provide an alternative proof of Courcelle's Theorem. Our technique can naturally be extended: There are treewidth-aware reductions from the optimization version of Courcelle's Theorem to MaxSAT and from the counting version of the theorem to #SAT. By using encodings to SAT, we obtain, ignoring polynomial factors, the same running time for the model-checking problem as we would with dedicated algorithms. We complement our upper bounds with new lower bounds based on ETH; and we show that the block size of the input's formula and the treewidth of the input's structure are tightly linked. We also provide matching upper and lower bounds for a fragment of guarded MSO, only using SAT-based techniques.
Consider a multi-class labelling problem, where the labels can take values in $[k]$, and a predictor predicts a distribution over the labels. In this work, we study the following foundational question: Are there notions of multi-class calibration that give strong guarantees of meaningful predictions and can be achieved in time and sample complexities polynomial in $k$? Prior notions of calibration exhibit a tradeoff between computational efficiency and expressivity: they either suffer from having sample complexity exponential in $k$, or needing to solve computationally intractable problems, or give rather weak guarantees. Our main contribution is a notion of calibration that achieves all these desiderata: we formulate a robust notion of projected smooth calibration for multi-class predictions, and give new recalibration algorithms for efficiently calibrating predictors under this definition with complexity polynomial in $k$. Projected smooth calibration gives strong guarantees for all downstream decision makers who want to use the predictor for binary classification problems of the form: does the label belong to a subset $T \subseteq [k]$: e.g. is this an image of an animal? It ensures that the probabilities predicted by summing the probabilities assigned to labels in $T$ are close to some perfectly calibrated binary predictor for that task. We also show that natural strengthenings of our definition are computationally hard to achieve: they run into information theoretic barriers or computational intractability. Underlying both our upper and lower bounds is a tight connection that we prove between multi-class calibration and the well-studied problem of agnostic learning in the (standard) binary prediction setting.
Large-scale machine learning problems make the cost of hyperparameter tuning ever more prohibitive. This creates a need for algorithms that can tune themselves on-the-fly. We formalize the notion of "tuning-free" algorithms that can match the performance of optimally-tuned optimization algorithms up to polylogarithmic factors given only loose hints on the relevant problem parameters. We consider in particular algorithms that can match optimally-tuned Stochastic Gradient Descent (SGD). When the domain of optimization is bounded, we show tuning-free matching of SGD is possible and achieved by several existing algorithms. We prove that for the task of minimizing a convex and smooth or Lipschitz function over an unbounded domain, tuning-free optimization is impossible. We discuss conditions under which tuning-free optimization is possible even over unbounded domains. In particular, we show that the recently proposed DoG and DoWG algorithms are tuning-free when the noise distribution is sufficiently well-behaved. For the task of finding a stationary point of a smooth and potentially nonconvex function, we give a variant of SGD that matches the best-known high-probability convergence rate for tuned SGD at only an additional polylogarithmic cost. However, we also give an impossibility result that shows no algorithm can hope to match the optimal expected convergence rate for tuned SGD with high probability.
In decision-making guided by machine learning, decision-makers often take identical actions in contexts with identical predicted outcomes. Conformal prediction helps decision-makers quantify outcome uncertainty for actions, allowing for better risk management. Inspired by this perspective, we introduce self-consistent conformal prediction, which yields both Venn-Abers calibrated predictions and conformal prediction intervals that are valid conditional on actions prompted by model predictions. Our procedure can be applied post-hoc to any black-box predictor to provide rigorous, action-specific decision-making guarantees. Numerical experiments show our approach strikes a balance between interval efficiency and conditional validity.
Community detection is a crucial task in network analysis that can be significantly improved by incorporating subject-level information, i.e. covariates. However, current methods often struggle with selecting tuning parameters and analyzing low-degree nodes. In this paper, we introduce a novel method that addresses these challenges by constructing network-adjusted covariates, which leverage the network connections and covariates with a unique weight to each node based on the node's degree. Spectral clustering on network-adjusted covariates yields an exact recovery of community labels under certain conditions, which is tuning-free and computationally efficient. We present novel theoretical results about the strong consistency of our method under degree-corrected stochastic blockmodels with covariates, even in the presence of mis-specification and sparse communities with bounded degrees. Additionally, we establish a general lower bound for the community detection problem when both network and covariates are present, and it shows our method is optimal up to a constant factor. Our method outperforms existing approaches in simulations and a LastFM app user network, and provides interpretable community structures in a statistics publication citation network where $30\%$ of nodes are isolated.
We present a distributed quasi-Newton (DQN) method, which enables a group of agents to compute an optimal solution of a separable multi-agent optimization problem locally using an approximation of the curvature of the aggregate objective function. Each agent computes a descent direction from its local estimate of the aggregate Hessian, obtained from quasi-Newton approximation schemes using the gradient of its local objective function. Moreover, we introduce a distributed quasi-Newton method for equality-constrained optimization (EC-DQN), where each agent takes Karush-Kuhn-Tucker-like update steps to compute an optimal solution. In our algorithms, each agent communicates with its one-hop neighbors over a peer-to-peer communication network to compute a common solution. We prove convergence of our algorithms to a stationary point of the optimization problem. In addition, we demonstrate the competitive empirical convergence of our algorithm in both well-conditioned and ill-conditioned optimization problems, in terms of the computation time and communication cost incurred by each agent for convergence, compared to existing distributed first-order and second-order methods. Particularly, in ill-conditioned problems, our algorithms achieve a faster computation time for convergence, while requiring a lower communication cost, across a range of communication networks with different degrees of connectedness, by leveraging information on the curvature of the problem.
We prove the completeness of a first-order analogue of the Fischer Servi logic $\mathsf{FS}$ with respect to its expected birelational semantics. To this end we introduce the notion of the $\textit{trace model}$ and, much like in a canonical model argument, prove a truth lemma. We conclude by examining a number of other first-order Fischer Servi logics, including the first-order analogue of $\mathsf{FSS4}$, whose completeness can be similarly proved.
We develop a general theory to optimize the frequentist regret for sequential learning problems, where efficient bandit and reinforcement learning algorithms can be derived from unified Bayesian principles. We propose a novel optimization approach to generate "algorithmic beliefs" at each round, and use Bayesian posteriors to make decisions. The optimization objective to create "algorithmic beliefs," which we term "Algorithmic Information Ratio," represents an intrinsic complexity measure that effectively characterizes the frequentist regret of any algorithm. To the best of our knowledge, this is the first systematical approach to make Bayesian-type algorithms prior-free and applicable to adversarial settings, in a generic and optimal manner. Moreover, the algorithms are simple and often efficient to implement. As a major application, we present a novel algorithm for multi-armed bandits that achieves the "best-of-all-worlds" empirical performance in the stochastic, adversarial, and non-stationary environments. And we illustrate how these principles can be used in linear bandits, bandit convex optimization, and reinforcement learning.
Standard contrastive learning approaches usually require a large number of negatives for effective unsupervised learning and often exhibit slow convergence. We suspect this behavior is due to the suboptimal selection of negatives used for offering contrast to the positives. We counter this difficulty by taking inspiration from support vector machines (SVMs) to present max-margin contrastive learning (MMCL). Our approach selects negatives as the sparse support vectors obtained via a quadratic optimization problem, and contrastiveness is enforced by maximizing the decision margin. As SVM optimization can be computationally demanding, especially in an end-to-end setting, we present simplifications that alleviate the computational burden. We validate our approach on standard vision benchmark datasets, demonstrating better performance in unsupervised representation learning over state-of-the-art, while having better empirical convergence properties.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.