亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We describe a new construction of Boolean functions. A specific instance of our construction provides a 30-variable Boolean function having min-entropy/influence ratio to be $128/45 \approx 2.8444$ which is presently the highest known value of this ratio that is achieved by any Boolean function. Correspondingly, $128/45$ is also presently the best known lower bound on the universal constant of the Fourier min-entropy/influence conjecture.

相關內容

Pre-trained language models (LMs) are able to perform complex reasoning without explicit fine-tuning. To understand how pre-training with a next-token prediction objective contributes to the emergence of such reasoning capability, we propose that we can view an LM as deriving new conclusions by aggregating indirect reasoning paths seen at pre-training time. We found this perspective effective in two important cases of reasoning: logic reasoning with knowledge graphs (KGs) and math reasoning with math word problems (MWPs). More specifically, we formalize the reasoning paths as random walk paths on the knowledge/reasoning graphs. Analyses of learned LM distributions suggest that a weighted sum of relevant random walk path probabilities is a reasonable way to explain how LMs reason. Experiments and analysis on multiple KG and MWP datasets reveal the effect of training on random walk paths and suggest that augmenting unlabeled random walk reasoning paths can improve real-world multi-step reasoning performance. code: //github.com/WANGXinyiLinda/LM_random_walk

Latent variable models are increasingly used in economics for high-dimensional categorical data like text and surveys. We demonstrate the effectiveness of Hamiltonian Monte Carlo (HMC) with parallelized automatic differentiation for analyzing such data in a computationally efficient and methodologically sound manner. Our new model, Supervised Topic Model with Covariates, shows that carefully modeling this type of data can have significant implications on conclusions compared to a simpler, frequently used, yet methodologically problematic, two-step approach. A simulation study and revisiting Bandiera et al. (2020)'s study of executive time use demonstrate these results. The approach accommodates thousands of parameters and doesn't require custom algorithms specific to each model, making it accessible for applied researchers

Large language models (LLMs) have achieved exceptional performance in code generation. However, the performance remains unsatisfactory in generating library-oriented code, especially for the libraries not present in the training data of LLMs. Previous work utilizes API recommendation technology to help LLMs use libraries: it retrieves APIs related to the user requirements, then leverages them as context to prompt LLMs. However, developmental requirements can be coarse-grained, requiring a combination of multiple fine-grained APIs. This granularity inconsistency makes API recommendation a challenging task. To address this, we propose CAPIR (Compositional API Recommendation), which adopts a "divide-and-conquer" strategy to recommend APIs for coarse-grained requirements. Specifically, CAPIR employs an LLM-based Decomposer to break down a coarse-grained task description into several detailed subtasks. Then, CAPIR applies an embedding-based Retriever to identify relevant APIs corresponding to each subtask. Moreover, CAPIR leverages an LLM-based Reranker to filter out redundant APIs and provides the final recommendation. To facilitate the evaluation of API recommendation methods on coarse-grained requirements, we present two challenging benchmarks, RAPID (Recommend APIs based on Documentation) and LOCG (Library-Oriented Code Generation). Experimental results on these benchmarks, demonstrate the effectiveness of CAPIR in comparison to existing baselines. Specifically, on RAPID's Torchdata-AR dataset, compared to the state-of-the-art API recommendation approach, CAPIR improves recall@5 from 18.7% to 43.2% and precision@5 from 15.5% to 37.1%. On LOCG's Torchdata-Code dataset, compared to code generation without API recommendation, CAPIR improves pass@100 from 16.0% to 28.0%.

Entity abstract summarization aims to generate a coherent description of a given entity based on a set of relevant Internet documents. Pretrained language models (PLMs) have achieved significant success in this task, but they may suffer from hallucinations, i.e. generating non-factual information about the entity. To address this issue, we decompose the summary into two components: Facts that represent the factual information about the given entity, which PLMs are prone to fabricate; and Template that comprises generic content with designated slots for facts, which PLMs can generate competently. Based on the facts-template decomposition, we propose SlotSum, an explainable framework for entity abstract summarization. SlotSum first creates the template and then predicts the fact for each template slot based on the input documents. Benefiting from our facts-template decomposition, SlotSum can easily locate errors and further rectify hallucinated predictions with external knowledge. We construct a new dataset WikiFactSum to evaluate the performance of SlotSum. Experimental results demonstrate that SlotSum could generate summaries that are significantly more factual with credible external knowledge.

We derive and study time-uniform confidence spheres -- confidence sphere sequences (CSSs) -- which contain the mean of random vectors with high probability simultaneously across all sample sizes. Inspired by the original work of Catoni and Giulini, we unify and extend their analysis to cover both the sequential setting and to handle a variety of distributional assumptions. Our results include an empirical-Bernstein CSS for bounded random vectors (resulting in a novel empirical-Bernstein confidence interval with asymptotic width scaling proportionally to the true unknown variance), CSSs for sub-$\psi$ random vectors (which includes sub-gamma, sub-Poisson, and sub-exponential), and CSSs for heavy-tailed random vectors (two moments only). Finally, we provide two CSSs that are robust to contamination by Huber noise. The first is a robust version of our empirical-Bernstein CSS, and the second extends recent work in the univariate setting to heavy-tailed multivariate distributions.

Transformers demonstrate impressive performance on a range of reasoning benchmarks. To evaluate the degree to which these abilities are a result of actual reasoning, existing work has focused on developing sophisticated benchmarks for behavioral studies. However, these studies do not provide insights into the internal mechanisms driving the observed capabilities. To improve our understanding of the internal mechanisms of transformers, we present a comprehensive mechanistic analysis of a transformer trained on a synthetic reasoning task. We identify a set of interpretable mechanisms the model uses to solve the task, and validate our findings using correlational and causal evidence. Our results suggest that it implements a depth-bounded recurrent mechanisms that operates in parallel and stores intermediate results in selected token positions. We anticipate that the motifs we identified in our synthetic setting can provide valuable insights into the broader operating principles of transformers and thus provide a basis for understanding more complex models.

We introduce a modified incremental learning algorithm for evolving Granular Neural Network Classifiers (eGNN-C+). We use double-boundary hyper-boxes to represent granules, and customize the adaptation procedures to enhance the robustness of outer boxes for data coverage and noise suppression, while ensuring that inner boxes remain flexible to capture drifts. The classifier evolves from scratch, incorporates new classes on the fly, and performs local incremental feature weighting. As an application, we focus on the classification of emotion-related patterns within electroencephalogram (EEG) signals. Emotion recognition is crucial for enhancing the realism and interactivity of computer systems. We extract features from the Fourier spectrum of EEG signals obtained from 28 individuals engaged in playing computer games -- a public dataset. Each game elicits a different predominant emotion: boredom, calmness, horror, or joy. We analyze individual electrodes, time window lengths, and frequency bands to assess the accuracy and interpretability of resulting user-independent neural models. The findings indicate that both brain hemispheres assist classification, especially electrodes on the temporal (T8) and parietal (P7) areas, alongside contributions from frontal and occipital electrodes. While patterns may manifest in any band, the Alpha (8-13Hz), Delta (1-4Hz), and Theta (4-8Hz) bands, in this order, exhibited higher correspondence with the emotion classes. The eGNN-C+ demonstrates effectiveness in learning EEG data. It achieves an accuracy of 81.7% and a 0.0029 II interpretability using 10-second time windows, even in face of a highly-stochastic time-varying 4-class classification problem.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.

北京阿比特科技有限公司