亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Vision Transformer (ViT) has performed remarkably in various computer vision tasks. Nonetheless, affected by the massive amount of parameters, ViT usually suffers from serious overfitting problems with a relatively limited number of training samples. In addition, ViT generally demands heavy computing resources, which limit its deployment on resource-constrained devices. As a type of model-compression method, model binarization is potentially a good choice to solve the above problems. Compared with the full-precision one, the model with the binarization method replaces complex tensor multiplication with simple bit-wise binary operations and represents full-precision model parameters and activations with only 1-bit ones, which potentially solves the problem of model size and computational complexity, respectively. In this paper, we investigate a binarized ViT model. Empirically, we observe that the existing binarization technology designed for Convolutional Neural Networks (CNN) cannot migrate well to a ViT's binarization task. We also find that the decline of the accuracy of the binary ViT model is mainly due to the information loss of the Attention module and the Value vector. Therefore, we propose a novel model binarization technique, called Group Superposition Binarization (GSB), to deal with these issues. Furthermore, in order to further improve the performance of the binarization model, we have investigated the gradient calculation procedure in the binarization process and derived more proper gradient calculation equations for GSB to reduce the influence of gradient mismatch. Then, the knowledge distillation technique is introduced to alleviate the performance degradation caused by model binarization. Analytically, model binarization can limit the parameters search space during parameter updates while training a model....

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 3D · 多樣性 · Nuance · 目標檢測 ·
2024 年 3 月 1 日

Recent advancements in diffusion models have significantly enhanced the data synthesis with 2D control. Yet, precise 3D control in street view generation, crucial for 3D perception tasks, remains elusive. Specifically, utilizing Bird's-Eye View (BEV) as the primary condition often leads to challenges in geometry control (e.g., height), affecting the representation of object shapes, occlusion patterns, and road surface elevations, all of which are essential to perception data synthesis, especially for 3D object detection tasks. In this paper, we introduce MagicDrive, a novel street view generation framework, offering diverse 3D geometry controls including camera poses, road maps, and 3D bounding boxes, together with textual descriptions, achieved through tailored encoding strategies. Besides, our design incorporates a cross-view attention module, ensuring consistency across multiple camera views. With MagicDrive, we achieve high-fidelity street-view image & video synthesis that captures nuanced 3D geometry and various scene descriptions, enhancing tasks like BEV segmentation and 3D object detection.

Spiking Neural Networks (SNNs) are at the forefront of neuromorphic computing thanks to their potential energy-efficiency, low latencies, and capacity for continual learning. While these capabilities are well suited for robotics tasks, SNNs have seen limited adaptation in this field thus far. This work introduces a SNN for Visual Place Recognition (VPR) that is both trainable within minutes and queryable in milliseconds, making it well suited for deployment on compute-constrained robotic systems. Our proposed system, VPRTempo, overcomes slow training and inference times using an abstracted SNN that trades biological realism for efficiency. VPRTempo employs a temporal code that determines the timing of a single spike based on a pixel's intensity, as opposed to prior SNNs relying on rate coding that determined the number of spikes; improving spike efficiency by over 100%. VPRTempo is trained using Spike-Timing Dependent Plasticity and a supervised delta learning rule enforcing that each output spiking neuron responds to just a single place. We evaluate our system on the Nordland and Oxford RobotCar benchmark localization datasets, which include up to 27k places. We found that VPRTempo's accuracy is comparable to prior SNNs and the popular NetVLAD place recognition algorithm, while being several orders of magnitude faster and suitable for real-time deployment -- with inference speeds over 50 Hz on CPU. VPRTempo could be integrated as a loop closure component for online SLAM on resource-constrained systems such as space and underwater robots.

In vision tasks, a larger effective receptive field (ERF) is associated with better performance. While attention natively supports global context, convolution requires multiple stacked layers and a hierarchical structure for large context. In this work, we extend Hyena, a convolution-based attention replacement, from causal sequences to the non-causal two-dimensional image space. We scale the Hyena convolution kernels beyond the feature map size up to 191$\times$191 to maximize the ERF while maintaining sub-quadratic complexity in the number of pixels. We integrate our two-dimensional Hyena, HyenaPixel, and bidirectional Hyena into the MetaFormer framework. For image categorization, HyenaPixel and bidirectional Hyena achieve a competitive ImageNet-1k top-1 accuracy of 83.0% and 83.5%, respectively, while outperforming other large-kernel networks. Combining HyenaPixel with attention further increases accuracy to 83.6%. We attribute the success of attention to the lack of spatial bias in later stages and support this finding with bidirectional Hyena.

Large Language Models (LLMs) have demonstrated impressive capabilities across a wide range of tasks. However, their proficiency and reliability in the specialized domain of Data Analysis, particularly with a focus on data-driven thinking, remain uncertain. To bridge this gap, we introduce BIBench, a comprehensive benchmark designed to evaluate the data analysis capabilities of LLMs within the context of Business Intelligence (BI). BIBench assesses LLMs across three dimensions: 1) BI foundational knowledge, evaluating the models' numerical reasoning and familiarity with financial concepts; 2) BI knowledge application, determining the models' ability to quickly comprehend textual information and generate analysis questions from multiple views; and 3) BI technical skills, examining the models' use of technical knowledge to address real-world data analysis challenges. BIBench comprises 11 sub-tasks, spanning three categories of task types: classification, extraction, and generation. Additionally, we've developed BIChat, a domain-specific dataset with over a million data points, to fine-tune LLMs. We will release BIBenchmark, BIChat, and the evaluation scripts at \url{//github.com/cubenlp/BIBench}. This benchmark aims to provide a measure for in-depth analysis of LLM abilities and foster the advancement of LLMs in the field of data analysis.

Social networks are often associated with rich side information, such as texts and images. While numerous methods have been developed to identify communities from pairwise interactions, they usually ignore such side information. In this work, we study an extension of the Stochastic Block Model (SBM), a widely used statistical framework for community detection, that integrates vectorial edges covariates: the Vectorial Edges Covariates Stochastic Block Model (VEC-SBM). We propose a novel algorithm based on iterative refinement techniques and show that it optimally recovers the latent communities under the VEC-SBM. Furthermore, we rigorously assess the added value of leveraging edge's side information in the community detection process. We complement our theoretical results with numerical experiments on synthetic and semi-synthetic data.

Object pose estimation is a fundamental computer vision task exploited in several robotics and augmented reality applications. Many established approaches rely on predicting 2D-3D keypoint correspondences using RANSAC (Random sample consensus) and estimating the object pose using the PnP (Perspective-n-Point) algorithm. Being RANSAC non-differentiable, correspondences cannot be directly learned in an end-to-end fashion. In this paper, we address the stereo image-based object pose estimation problem by i) introducing a differentiable RANSAC layer into a well-known monocular pose estimation network; ii) exploiting an uncertainty-driven multi-view PnP solver which can fuse information from multiple views. We evaluate our approach on a challenging public stereo object pose estimation dataset and a custom-built dataset we call Transparent Tableware Dataset (TTD), yielding state-of-the-art results against other recent approaches. Furthermore, in our ablation study, we show that the differentiable RANSAC layer plays a significant role in the accuracy of the proposed method. We release with this paper the code of our method and the TTD dataset.

Self-attention and position embedding are two key modules in transformer-based Large Language Models (LLMs). However, the potential relationship between them is far from well studied, especially for long context window extending. In fact, anomalous behaviors harming long context extrapolation exist between Rotary Position Embedding (RoPE) and vanilla self-attention unveiled by our work. To address this issue, we propose a novel attention mechanism, CoCA (Collinear Constrained Attention). Specifically, we enforce a collinear constraint between $Q$ and $K$ to seamlessly integrate RoPE and self-attention. While only adding minimal computational and spatial complexity, this integration significantly enhances long context window extrapolation ability. We provide an optimized implementation, making it a drop-in replacement for any existing transformer-based models. Extensive experiments show that CoCA performs extraordinarily well in extending context windows. A CoCA-based GPT model, trained with a context length of 512, can seamlessly extend the context window up to 32K (60$\times$), without any fine-tuning. Additionally, by dropping CoCA in LLaMA-7B, we achieve extrapolation up to 32K within only 2K training length. Our code is publicly available at: //github.com/codefuse-ai/Collinear-Constrained-Attention

As research and deployment of AI grows, the computational burden to support and sustain its progress inevitably does too. To train or fine-tune state-of-the-art models in NLP, computer vision, etc., some form of AI hardware acceleration is virtually a requirement. Recent large language models require considerable resources to train and deploy, resulting in significant energy usage, potential carbon emissions, and massive demand for GPUs and other hardware accelerators. However, this surge carries large implications for energy sustainability at the HPC/datacenter level. In this paper, we study the aggregate effect of power-capping GPUs on GPU temperature and power draw at a research supercomputing center. With the right amount of power-capping, we show significant decreases in both temperature and power draw, reducing power consumption and potentially improving hardware life-span with minimal impact on job performance. While power-capping reduces power draw by design, the aggregate system-wide effect on overall energy consumption is less clear; for instance, if users notice job performance degradation from GPU power-caps, they may request additional GPU-jobs to compensate, negating any energy savings or even worsening energy consumption. To our knowledge, our work is the first to conduct and make available a detailed analysis of the effects of GPU power-capping at the supercomputing scale. We hope our work will inspire HPCs/datacenters to further explore, evaluate, and communicate the impact of power-capping AI hardware accelerators for more sustainable AI.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司