亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we detail the GPU-porting of an in-house pseudo-spectral solver tailored towards large-scale simulations of interface-resolved simulation of drop- and bubble-laden turbulent flows. The code relies on direct numerical simulation of the Navier-Stokes equations, used to describe the flow field, coupled with a phase-field method, used to describe the shape, deformation, and topological changes of the interface of the drops or bubbles. The governing equations -Navier-Stokes and Cahn-Hilliard equations-are solved using a pseudo-spectral method that relies on transforming the variables in the wavenumber space. The code targets large-scale simulations of drop- and bubble-laden turbulent flows and relies on a multilevel parallelism. The first level of parallelism relies on the message-passing interface (MPI) and is used on multi-core architectures in CPU-based infrastructures. A second level of parallelism relies on OpenACC directives and cuFFT libraries and is used to accelerate the code execution when GPU-based infrastructures are targeted. The resulting multiphase flow solver can be efficiently executed in heterogeneous computing infrastructures and exhibits a remarkable speed-up when GPUs are employed. Thanks to the modular structure of the code and the use of a directive-based strategy to offload code execution on GPUs, only minor code modifications are required when targeting different computing architectures. This improves code maintenance, version control and the implementation of additional modules or governing equations.

相關內容

In this paper, we investigate the strong convergence analysis of parareal algorithms for stochastic Maxwell equations with the damping term driven by additive noise. The proposed parareal algorithms proceed as two-level temporal parallelizable integrators with the stochastic exponential integrator as the coarse propagator and both the exact solution integrator and the stochastic exponential integrator as the fine propagator. It is proved that the convergence order of the proposed algorithms linearly depends on the iteration number. Numerical experiments are performed to illustrate the convergence order of the algorithms for different choices of the iteration number, the damping coefficient and the scale of noise.

The angular measure on the unit sphere characterizes the first-order dependence structure of the components of a random vector in extreme regions and is defined in terms of standardized margins. Its statistical recovery is an important step in learning problems involving observations far away from the center. In the common situation that the components of the vector have different distributions, the rank transformation offers a convenient and robust way of standardizing data in order to build an empirical version of the angular measure based on the most extreme observations. We provide a functional asymptotic expansion for the empirical angular measure in the bivariate case based on the theory of weak convergence in the space of bounded functions. From the expansion, not only can the known asymptotic distribution of the empirical angular measure be recovered, it also enables to find expansions and weak limits for other statistics based on the associated empirical process or its quantile version.

High-performance computing (HPC) has revolutionized our ability to perform detailed simulations of complex real-world processes. A prominent contemporary example is from aerospace propulsion, where HPC is used for rotating detonation rocket engine (RDRE) simulations in support of the design of next-generation rocket engines; however, these simulations take millions of core hours even on powerful supercomputers, which makes them impractical for engineering tasks like design exploration and risk assessment. Reduced-order models (ROMs) address this limitation by constructing computationally cheap yet sufficiently accurate approximations that serve as surrogates for the high-fidelity model. This paper contributes a new distributed algorithm that achieves fast and scalable construction of predictive physics-based ROMs trained from sparse datasets of extremely large state dimension. The algorithm learns structured physics-based ROMs that approximate the dynamical systems underlying those datasets. This enables model reduction for problems at a scale and complexity that exceeds the capabilities of existing approaches. We demonstrate our algorithm's scalability using up to $2,048$ cores on the Frontera supercomputer at the Texas Advanced Computing Center. We focus on a real-world three-dimensional RDRE for which one millisecond of simulated physical time requires one million core hours on a supercomputer. Using a training dataset of $2,536$ snapshots each of state dimension $76$ million, our distributed algorithm enables the construction of a predictive data-driven reduced model in just $13$ seconds on $2,048$ cores on Frontera.

We prove an abstract convergence result for a family of dual-mesh based quadrature rules on tensor products of simplical meshes. In the context of the multilinear tensor-product finite element discretization of reaction-drift-diffusion equations, our quadrature rule generalizes the mass-lump rule, retaining its most useful properties; for a nonnegative reaction coefficient, it gives an $O(h^2)$-accurate, nonnegative diagonalization of the reaction operator. The major advantage of our scheme in comparison with the standard mass lumping scheme is that, under mild conditions, it produces an $O(h^2)$ consistency error even when the integrand has a jump discontinuity. The finite-volume-type quadrature rule has been stated in a less general form and applied to systems of reaction-diffusion equations related to particle-based stochastic reaction-diffusion simulations (PBSRD); in this context, the reaction operator is \textit{required} to be an $M$-matrix and a standard model for bimolecular reactions has a discontinuous reaction coefficient. We apply our convergence results to a finite element discretization of scalar drift-diffusion-reaction model problem related to PBSRD systems, and provide new numerical convergence studies confirming the theory.

The discretization of fluid-poromechanics systems is typically highly demanding in terms of computational effort. This is particularly true for models of multiphysics flows in the brain, due to the geometrical complexity of the cerebral anatomy - requiring a very fine computational mesh for finite element discretization - and to the high number of variables involved. Indeed, this kind of problems can be modeled by a coupled system encompassing the Stokes equations for the cerebrospinal fluid in the brain ventricles and Multiple-network Poro-Elasticity (MPE) equations describing the brain tissue, the interstitial fluid, and the blood vascular networks at different space scales. The present work aims to rigorously derive a posteriori error estimates for the coupled Stokes-MPE problem, as a first step towards the design of adaptive refinement strategies or reduced order models to decrease the computational demand of the problem. Through numerical experiments, we verify the reliability and optimal efficiency of the proposed a posteriori estimator and identify the role of the different solution variables in its composition.

This work explores the representation of univariate and multivariate functions as matrix product states (MPS), also known as quantized tensor-trains (QTT). It proposes an algorithm that employs iterative Chebyshev expansions and Clenshaw evaluations to represent analytic and highly differentiable functions as MPS Chebyshev interpolants. It demonstrates rapid convergence for highly-differentiable functions, aligning with theoretical predictions, and generalizes efficiently to multidimensional scenarios. The performance of the algorithm is compared with that of tensor cross-interpolation (TCI) and multiscale interpolative constructions through a comprehensive comparative study. When function evaluation is inexpensive or when the function is not analytical, TCI is generally more efficient for function loading. However, the proposed method shows competitive performance, outperforming TCI in certain multivariate scenarios. Moreover, it shows advantageous scaling rates and generalizes to a wider range of tasks by providing a framework for function composition in MPS, which is useful for non-linear problems and many-body statistical physics.

In high-temperature plasma physics, a strong magnetic field is usually used to confine charged particles. Therefore, for studying the classical mathematical models of the physical problems it needs to consider the effect of external magnetic fields. One of the important model equations in plasma is the Vlasov-Poisson equation with an external magnetic field. This equation usually has multi-scale characteristics and rich physical properties, thus it is very important and meaningful to construct numerical methods that can maintain the physical properties inherited by the original systems over long time. This paper extends the corresponding theory in Cartesian coordinates to general orthogonal curvilinear coordinates, and proves that a Poisson-bracket structure can still be obtained after applying the corresponding finite element discretization. However, the Hamiltonian systems in the new coordinate systems generally cannot be decomposed into sub-systems that can be solved accurately, so it is impossible to use the splitting methods to construct the corresponding geometric integrators. Therefore, this paper proposes a semi-implicit method for strong magnetic fields and analyzes the asymptotic stability of this method.

In small area estimation, it is a smart strategy to rely on data measured over time. However, linear mixed models struggle to properly capture time dependencies when the number of lags is large. Given the lack of published studies addressing robust prediction in small areas using time-dependent data, this research seeks to extend M-quantile models to this field. Indeed, our methodology successfully addresses this challenge and offers flexibility to the widely imposed assumption of unit-level independence. Under the new model, robust bias-corrected predictors for small area linear indicators are derived. Additionally, the optimal selection of the robustness parameter for bias correction is explored, contributing theoretically to the field and enhancing outlier detection. For the estimation of the mean squared error (MSE), a first-order approximation and analytical estimators are obtained under general conditions. Several simulation experiments are conducted to evaluate the performance of the fitting algorithm, the new predictors, and the resulting MSE estimators, as well as the optimal selection of the robustness parameter. Finally, an application to the Spanish Living Conditions Survey data illustrates the usefulness of the proposed predictors.

In this work we study the numerical approximation of a class of ergodic Backward Stochastic Differential Equations. These equations are formulated in an infinite horizon framework and provide a probabilistic representation for elliptic Partial Differential Equations of ergodic type. In order to build our numerical scheme, we put forward a new representation of the PDE solution by using a classical probabilistic representation of the gradient. Then, based on this representation, we propose a fully implementable numerical scheme using a Picard iteration procedure, a grid space discretization and a Monte-Carlo approximation. Up to a limiting technical condition that guarantee the contraction of the Picard procedure, we obtain an upper bound for the numerical error. We also provide some numerical experiments that show the efficiency of this approach for small dimensions.

Motivated by the application of saddlepoint approximations to resampling-based statistical tests, we prove that a Lugananni-Rice style approximation for conditional tail probabilities of averages of conditionally independent random variables has vanishing relative error. We also provide a general condition on the existence and uniqueness of the solution to the corresponding saddlepoint equation. The results are valid under a broad class of distributions involving no restrictions on the smoothness of the distribution function. The derived saddlepoint approximation formula can be directly applied to resampling-based hypothesis tests, including bootstrap, sign-flipping and conditional randomization tests. Our results extend and connect several classical saddlepoint approximation results. On the way to proving our main results, we prove a new conditional Berry-Esseen inequality for the sum of conditionally independent random variables, which may be of independent interest.

北京阿比特科技有限公司