Current research on cross-modal retrieval is mostly English-oriented, as the availability of a large number of English-oriented human-labeled vision-language corpora. In order to break the limit of non-English labeled data, cross-lingual cross-modal retrieval (CCR) has attracted increasing attention. Most CCR methods construct pseudo-parallel vision-language corpora via Machine Translation (MT) to achieve cross-lingual transfer. However, the translated sentences from MT are generally imperfect in describing the corresponding visual contents. Improperly assuming the pseudo-parallel data are correctly correlated will make the networks overfit to the noisy correspondence. Therefore, we propose Dual-view Curricular Optimal Transport (DCOT) to learn with noisy correspondence in CCR. In particular, we quantify the confidence of the sample pair correlation with optimal transport theory from both the cross-lingual and cross-modal views, and design dual-view curriculum learning to dynamically model the transportation costs according to the learning stage of the two views. Extensive experiments are conducted on two multilingual image-text datasets and one video-text dataset, and the results demonstrate the effectiveness and robustness of the proposed method. Besides, our proposed method also shows a good expansibility to cross-lingual image-text baselines and a decent generalization on out-of-domain data.
We numerically demonstrate a microring-based time-delay reservoir computing scheme that simultaneously solves three tasks involving time-series prediction, classification, and wireless channel equalization. Each task performed on a wavelength-multiplexed channel achieves state-of-the-art performance with optimized power and frequency detuning.
In recommendation, graph-based Collaborative Filtering (CF) methods mitigate the data sparsity by introducing Graph Contrastive Learning (GCL). However, the random negative sampling strategy in these GCL-based CF models neglects the semantic structure of users (items), which not only introduces false negatives (negatives that are similar to anchor user (item)) but also ignores the potential positive samples. To tackle the above issues, we propose Topology-aware Debiased Self-supervised Graph Learning (TDSGL) for recommendation, which constructs contrastive pairs according to the semantic similarity between users (items). Specifically, since the original user-item interaction data commendably reflects the purchasing intent of users and certain characteristics of items, we calculate the semantic similarity between users (items) on interaction data. Then, given a user (item), we construct its negative pairs by selecting users (items) which embed different semantic structures to ensure the semantic difference between the given user (item) and its negatives. Moreover, for a user (item), we design a feature extraction module that converts other semantically similar users (items) into an auxiliary positive sample to acquire a more informative representation. Experimental results show that the proposed model outperforms the state-of-the-art models significantly on three public datasets. Our model implementation codes are available at //github.com/malajikuai/TDSGL.
DEtection TRansformer (DETR) and its variants (DETRs) have been successfully applied to crowded pedestrian detection, which achieved promising performance. However, we find that, in different degrees of crowded scenes, the number of DETRs' queries must be adjusted manually, otherwise, the performance would degrade to varying degrees. In this paper, we first analyze the two current query generation methods and summarize four guidelines for designing the adaptive query generation method. Then, we propose Rank-based Adaptive Query Generation (RAQG) to alleviate the problem. Specifically, we design a rank prediction head that can predict the rank of the lowest confidence positive training sample produced by the encoder. Based on the predicted rank, we design an adaptive selection method that can adaptively select coarse detection results produced by the encoder to generate queries. Moreover, to train the rank prediction head better, we propose Soft Gradient L1 Loss. The gradient of Soft Gradient L1 Loss is continuous, which can describe the relationship between the loss value and the updated value of model parameters granularly. Our method is simple and effective, which can be plugged into any DETRs to make it query-adaptive in theory. The experimental results on Crowdhuman dataset and Citypersons dataset show that our method can adaptively generate queries for DETRs and achieve competitive results. Especially, our method achieves state-of-the-art 39.4% MR on Crowdhuman dataset.
Riemannian submanifold optimization with momentum is computationally challenging because, to ensure that the iterates remain on the submanifold, we often need to solve difficult differential equations. Here, we simplify such difficulties for a class of sparse or structured symmetric positive-definite matrices with the affine-invariant metric. We do so by proposing a generalized version of the Riemannian normal coordinates that dynamically orthonormalizes the metric and locally converts the problem into an unconstrained problem in the Euclidean space. We use our approach to simplify existing approaches for structured covariances and develop matrix-inverse-free $2^\text{nd}$-order optimizers for deep learning with low precision by using only matrix multiplications. Code: //github.com/yorkerlin/StructuredNGD-DL
We propose task-adaptive tokenization as a way to adapt the generation pipeline to the specifics of a downstream task and enhance long-form generation in mental health. Inspired by insights from cognitive science, our task-adaptive tokenizer samples variable segmentations from multiple outcomes, with sampling probabilities optimized based on task-specific data. We introduce a strategy for building a specialized vocabulary and introduce a vocabulary merging protocol that allows for the integration of task-specific tokens into the pre-trained model's tokenization step. Through extensive experiments on psychological question-answering tasks in both Chinese and English, we find that our task-adaptive tokenization approach brings a significant improvement in generation performance while using up to 60% fewer tokens. Preliminary experiments point to promising results when using our tokenization approach with very large language models.
Chain-of-thought (CoT) is capable of eliciting models to explicitly generate reasoning paths, thus promoting reasoning accuracy and attracting increasing attention. Specifically, zero-shot CoT achieves remarkable improvements in a wide range of reasoning tasks by simply instructing the LLM with the prompt "Let's think step by step!". Despite the success of zero-shot CoT, the existing zero-shot prompting techniques remain limited to a single language, making it challenging to generalize to other languages and hindering global development. In this work, we introduce cross-lingual prompting (CLP), aiming to improve zero-shot CoT reasoning across languages. Specifically, CLP consists of two main components: (1) cross-lingual alignment prompting and (2) task-specific solver prompting. The cross-lingual alignment prompting is responsible for aligning representations across different languages, whereas the task-specific solver prompting is used to generate the final chain of thoughts and results for the reasoning task. In addition, we further introduce cross-lingual self-consistent prompting (CLSP) to ensemble different reasoning paths across languages. Our experimental evaluations on several benchmarks demonstrate that CLP and CLSP significantly outperform the existing prompting methods and achieve state-of-the-art performance. We hope this work will inspire further breakthroughs in cross-lingual CoT.
Reinforcement Learning algorithms that learn from human feedback (RLHF) need to be efficient in terms of statistical complexity, computational complexity, and query complexity. In this work, we consider the RLHF setting where the feedback is given in the format of preferences over pairs of trajectories. In the linear MDP model, by using randomization in algorithm design, we present an algorithm that is sample efficient (i.e., has near-optimal worst-case regret bounds) and has polynomial running time (i.e., computational complexity is polynomial with respect to relevant parameters). Our algorithm further minimizes the query complexity through a novel randomized active learning procedure. In particular, our algorithm demonstrates a near-optimal tradeoff between the regret bound and the query complexity. To extend the results to more general nonlinear function approximation, we design a model-based randomized algorithm inspired by the idea of Thompson sampling. Our algorithm minimizes Bayesian regret bound and query complexity, again achieving a near-optimal tradeoff between these two quantities. Computation-wise, similar to the prior Thompson sampling algorithms under the regular RL setting, the main computation primitives of our algorithm are Bayesian supervised learning oracles which have been heavily investigated on the empirical side when applying Thompson sampling algorithms to RL benchmark problems.
Accurate hydrological understanding and water cycle prediction are crucial for addressing scientific and societal challenges associated with the management of water resources, particularly under the dynamic influence of anthropogenic climate change. Existing reviews predominantly concentrate on the development of machine learning (ML) in this field, yet there is a clear distinction between hydrology and ML as separate paradigms. Here, we introduce physics-aware ML as a transformative approach to overcome the perceived barrier and revolutionize both fields. Specifically, we present a comprehensive review of the physics-aware ML methods, building a structured community (PaML) of existing methodologies that integrate prior physical knowledge or physics-based modeling into ML. We systematically analyze these PaML methodologies with respect to four aspects: physical data-guided ML, physics-informed ML, physics-embedded ML, and physics-aware hybrid learning. PaML facilitates ML-aided hypotheses, accelerating insights from big data and fostering scientific discoveries. We first conduct a systematic review of hydrology in PaML, including rainfall-runoff hydrological processes and hydrodynamic processes, and highlight the most promising and challenging directions for different objectives and PaML methods. Finally, a new PaML-based hydrology platform, termed HydroPML, is released as a foundation for hydrological applications. HydroPML enhances the explainability and causality of ML and lays the groundwork for the digital water cycle's realization. The HydroPML platform is publicly available at //hydropml.github.io/.
Multi-modal fusion is a fundamental task for the perception of an autonomous driving system, which has recently intrigued many researchers. However, achieving a rather good performance is not an easy task due to the noisy raw data, underutilized information, and the misalignment of multi-modal sensors. In this paper, we provide a literature review of the existing multi-modal-based methods for perception tasks in autonomous driving. Generally, we make a detailed analysis including over 50 papers leveraging perception sensors including LiDAR and camera trying to solve object detection and semantic segmentation tasks. Different from traditional fusion methodology for categorizing fusion models, we propose an innovative way that divides them into two major classes, four minor classes by a more reasonable taxonomy in the view of the fusion stage. Moreover, we dive deep into the current fusion methods, focusing on the remaining problems and open-up discussions on the potential research opportunities. In conclusion, what we expect to do in this paper is to present a new taxonomy of multi-modal fusion methods for the autonomous driving perception tasks and provoke thoughts of the fusion-based techniques in the future.
For languages with no annotated resources, transferring knowledge from rich-resource languages is an effective solution for named entity recognition (NER). While all existing methods directly transfer from source-learned model to a target language, in this paper, we propose to fine-tune the learned model with a few similar examples given a test case, which could benefit the prediction by leveraging the structural and semantic information conveyed in such similar examples. To this end, we present a meta-learning algorithm to find a good model parameter initialization that could fast adapt to the given test case and propose to construct multiple pseudo-NER tasks for meta-training by computing sentence similarities. To further improve the model's generalization ability across different languages, we introduce a masking scheme and augment the loss function with an additional maximum term during meta-training. We conduct extensive experiments on cross-lingual named entity recognition with minimal resources over five target languages. The results show that our approach significantly outperforms existing state-of-the-art methods across the board.