Background and purpose: Deep Learning (DL) has been widely explored for Organs at Risk (OARs) segmentation; however, most studies have focused on a single modality, either CT or MRI, not both simultaneously. This study presents a high-performing DL pipeline for segmentation of 30 OARs from MRI and CT scans of Head and Neck (H&N) cancer patients. Materials and methods: Paired CT and MRI-T1 images from 42 H&N cancer patients alongside annotation for 30 OARs from the H&N OAR CT & MR segmentation challenge dataset were used to develop a segmentation pipeline. After cropping irrelevant regions, rigid followed by non-rigid registration of CT and MRI volumes was performed. Two versions of the CT volume, representing soft tissues and bone anatomy, were stacked with the MRI volume and used as input to an nnU-Net pipeline. Modality Dropout was used during the training to force the model to learn from the different modalities. Segmentation masks were predicted with the trained model for an independent set of 14 new patients. The mean Dice Score (DS) and Hausdorff Distance (HD) were calculated for each OAR across these patients to evaluate the pipeline. Results: This resulted in an overall mean DS and HD of 0.777 +- 0.118 and 3.455 +- 1.679, respectively, establishing the state-of-the-art (SOTA) for this challenge at the time of submission. Conclusion: The proposed pipeline achieved the best DS and HD among all participants of the H&N OAR CT and MR segmentation challenge and sets a new SOTA for automated segmentation of H&N OARs.
Rota used the functional L to recover old properties and obtain some new formulas for the Bell numbers. Tanny used Rota's functional L and the celebrated Worpitzky identity to obtain some expression for the ordered Bell numbers, which can be seen as an evident to the fact that the ordered Bell numbers are gamma-positive. In this paper, we extend some of Rota's and Tanny's results to the framework of the set partitions of Coxeter type B.
As Kaplan-Meier (KM) analysis is limited to single unidirectional endpoints, most advanced cancer randomized clinical trials (RCTs) are powered for either progression free survival (PFS) or overall survival (OS). This discards efficacy information carried by partial responses, complete responses, and stable disease that frequently precede progressive disease and death. Chauhan Weighted Trajectory Analysis (CWTA) is a generalization of KM that simultaneously assesses multiple rank-ordered endpoints. We hypothesized that CWTA could use this efficacy information to reduce sample size requirements and expedite efficacy signals in advanced cancer trials. We performed 100-fold and 1000-fold simulations of solid tumour systemic therapy RCTs with health statuses rank ordered from complete response (Stage 0) to death (Stage 4). At increments of sample size and hazard ratio, we compared KM PFS and OS with CWTA for (i) sample size requirements to achieve a power of 0.8 and (ii) time-to-first significant efficacy signal. CWTA consistently demonstrated greater power, and reduced sample size requirements by 18% to 35% compared to KM PFS and 14% to 20% compared to KM OS. CWTA also expedited time-to-efficacy signals 2- to 6-fold. CWTA, by incorporating all efficacy signals in the cancer treatment trajectory, provides clinically relevant reduction in required sample size and meaningfully expedites the efficacy signals of cancer treatments compared to KM PFS and KM OS. Using CWTA rather than KM as the primary trial outcome has the potential to meaningfully reduce the numbers of patients, trial duration, and costs to evaluate therapies in advanced cancer.
The Sparse Kaczmarz method is a famous and widely used iterative method for solving the regularized basis pursuit problem. A general scheme of the surrogate hyperplane sparse Kaczmarz method is proposed. In particular, a class of residual-based surrogate hyperplane sparse Kaczmarz method is introduced and the implementations are well discussed. Their convergence theories are proved and the linear convergence rates are studied and compared in details. Numerical experiments verify the efficiency of the proposed methods.
Artificial intelligence systems, particularly large language models (LLMs), are increasingly being employed in high-stakes decisions that impact both individuals and society at large, often without adequate safeguards to ensure safety, quality, and equity. Yet LLMs hallucinate, lack common sense, and are biased - shortcomings that may reflect LLMs' inherent limitations and thus may not be remedied by more sophisticated architectures, more data, or more human feedback. Relying solely on LLMs for complex, high-stakes decisions is therefore problematic. Here we present a hybrid collective intelligence system that mitigates these risks by leveraging the complementary strengths of human experience and the vast information processed by LLMs. We apply our method to open-ended medical diagnostics, combining 40,762 differential diagnoses made by physicians with the diagnoses of five state-of-the art LLMs across 2,133 medical cases. We show that hybrid collectives of physicians and LLMs outperform both single physicians and physician collectives, as well as single LLMs and LLM ensembles. This result holds across a range of medical specialties and professional experience, and can be attributed to humans' and LLMs' complementary contributions that lead to different kinds of errors. Our approach highlights the potential for collective human and machine intelligence to improve accuracy in complex, open-ended domains like medical diagnostics.
We present a determinantal point process (DPP) inspired alternative to non-maximum suppression (NMS) which has become an integral step in all state-of-the-art object detection frameworks. DPPs have been shown to encourage diversity in subset selection problems. We pose NMS as a subset selection problem and posit that directly incorporating DPP like framework can improve the overall performance of the object detection system. We propose an optimization problem which takes the same inputs as NMS, but introduces a novel sub-modularity based diverse subset selection functional. Our results strongly indicate that the modifications proposed in this paper can provide consistent improvements to state-of-the-art object detection pipelines.
Thanks to Deep Neural Networks (DNNs), the accuracy of Keyword Spotting (KWS) has made substantial progress. However, as KWS systems are usually implemented on edge devices, energy efficiency becomes a critical requirement besides performance. Here, we take advantage of spiking neural networks' energy efficiency and propose an end-to-end lightweight KWS model. The model consists of two innovative modules: 1) Global-Local Spiking Convolution (GLSC) module and 2) Bottleneck-PLIF module. Compared to the hand-crafted feature extraction methods, the GLSC module achieves speech feature extraction that is sparser, more energy-efficient, and yields better performance. The Bottleneck-PLIF module further processes the signals from GLSC with the aim to achieve higher accuracy with fewer parameters. Extensive experiments are conducted on the Google Speech Commands Dataset (V1 and V2). The results show our method achieves competitive performance among SNN-based KWS models with fewer parameters.
Close to the origin, the nonlinear Klein--Gordon equations on the circle are nearly integrable Hamiltonian systems which have infinitely many almost conserved quantities called harmonic actions or super-actions. We prove that, at low regularity and with a CFL number of size 1, this property is preserved if we discretize the nonlinear Klein--Gordon equations with the symplectic mollified impulse methods. This extends previous results of D. Cohen, E. Hairer and C. Lubich to non-smooth solutions.
Self-Supervised Learning is vastly used to efficiently represent speech for Spoken Language Understanding, gradually replacing conventional approaches. Meanwhile, textual SSL models are proposed to encode language-agnostic semantics. SAMU-XLSR framework employed this semantic information to enrich multilingual speech representations. A recent study investigated SAMU-XLSR in-domain semantic enrichment by specializing it on downstream transcriptions, leading to state-of-the-art results on a challenging SLU task. This study's interest lies in the loss of multilingual performances and lack of specific-semantics training induced by such specialization in close languages without any SLU implication. We also consider SAMU-XLSR's loss of initial cross-lingual abilities due to a separate SLU fine-tuning. Therefore, this paper proposes a dual task learning approach to improve SAMU-XLSR semantic enrichment while considering distant languages for multilingual and language portability experiments.
Speculation is fundamental to achieving high CPU performance, yet it enables vulnerabilities such as Spectre attacks, which remain a significant challenge to mitigate without incurring substantial performance overheads. These attacks typically unfold in three steps: they speculatively access sensitive data (access), alter the cache state (transmit), and then utilize a cache timing attack (e.g., Flush+Reload) to extract the secret (receive). Most Spectre attacks exploit a cache timing side channel during the transmit and receive steps. Our key observation is that Spectre attacks do not require the transmit instruction to complete before mis-prediction is detected and mis-speculated instructions are squashed. Instead, it suffices for the instruction to execute and dispatch a request to the memory hierarchy. Responses from memory that arrive after squashing occurs still alter the cache state, including those related to mis-speculated memory accesses. We therefore propose a novel mitigation technique, Cancellable Memory Requests (CMR), that cancels mis-speculated memory requests. Immediately upon squashing, a cancellation is sent to the cache hierarchy, propagating downstream and preventing any changes to caches that have not yet received a response. This reduces the likelihood of cache state changes, thereby reducing the likelihood of Spectre attacks succeeding. We implement CMR on gem5 and show that it thwarts practical Spectre attacks, and has near-zero performance overheads. We show that CMR can completely thwart Spectre attacks in four real-world processors with realistic system configurations.
We studied the dynamical properties of Rabi oscillations driven by an alternating Rashba field applied to a two-dimensional (2D) harmonic confinement system. We solve the time-dependent (TD) Schr\"{o}dinger equation numerically and rewrite the resulting TD wavefunction onto the Bloch sphere (BS) using two BS parameters of the zenith ($\theta_B$) and azimuthal ($\phi_B$) angles, extracting the phase information $\phi_B$ as well as the mixing ratio $\theta_B$ between the two BS-pole states. We employed a two-state rotating wave (TSRW) approach and studied the fundamental features of $\theta_B$ and $\phi_B$ over time. The TSRW approach reveals a triangular wave formation in $\theta_B$. Moreover, at each apex of the triangular wave, the TD wavefunction passes through the BS pole, and the state is completely replaced by the opposite spin state. The TSRW approach also elucidates a linear change in $\phi_B$. The slope of $\phi_B$ vs. time is equal to the difference between the dynamical terms, leading to a confinement potential in the harmonic system. The TSRW approach further demonstrates a jump in the phase difference by $\pi$ when the wavefunction passes through the BS pole. The alternating Rashba field causes multiple successive Rabi transitions in the 2D harmonic system. We then introduce the effective BS (EBS) and transform these complicated transitions into an equivalent "single" Rabi one. Consequently, the EBS parameters $\theta_B^{\mathrm{eff}}$ and $\phi_B^{\mathrm{eff}}$ exhibit mixing and phase difference between two spin states $\alpha$ and $\beta$, leading to a deep understanding of the TD features of multi-Rabi oscillations. Furthermore, the combination of the BS representation with the TSRW approach successfully reveals the dynamical properties of the Rabi oscillation, even beyond the TSRW approximation.