In emergencies, the ability to quickly and accurately gather environmental data and command information, and to make timely decisions, is particularly critical. Traditional semantic communication frameworks, primarily based on a single modality, are susceptible to complex environments and lighting conditions, thereby limiting decision accuracy. To this end, this paper introduces a multimodal generative semantic communication framework named mm-GESCO. The framework ingests streams of visible and infrared modal image data, generates fused semantic segmentation maps, and transmits them using a combination of one-hot encoding and zlib compression techniques to enhance data transmission efficiency. At the receiving end, the framework can reconstruct the original multimodal images based on the semantic maps. Additionally, a latent diffusion model based on contrastive learning is designed to align different modal data within the latent space, allowing mm-GESCO to reconstruct latent features of any modality presented at the input. Experimental results demonstrate that mm-GESCO achieves a compression ratio of up to 200 times, surpassing the performance of existing semantic communication frameworks and exhibiting excellent performance in downstream tasks such as object classification and detection.
Recently, it was proved that group equivariance emerges in ensembles of neural networks as the result of full augmentation in the limit of infinitely wide neural networks (neural tangent kernel limit). In this paper, we extend this result significantly. We provide a proof that this emergence does not depend on the neural tangent kernel limit at all. We also consider stochastic settings, and furthermore general architectures. For the latter, we provide a simple sufficient condition on the relation between the architecture and the action of the group for our results to hold. We validate our findings through simple numeric experiments.
Randomized matrix algorithms have become workhorse tools in scientific computing and machine learning. To use these algorithms safely in applications, they should be coupled with posterior error estimates to assess the quality of the output. To meet this need, this paper proposes two diagnostics: a leave-one-out error estimator for randomized low-rank approximations and a jackknife resampling method to estimate the variance of the output of a randomized matrix computation. Both of these diagnostics are rapid to compute for randomized low-rank approximation algorithms such as the randomized SVD and randomized Nystr\"om approximation, and they provide useful information that can be used to assess the quality of the computed output and guide algorithmic parameter choices.
Traditional statistical inference in cluster randomized trials typically invokes the asymptotic theory that requires the number of clusters to approach infinity. In this article, we propose an alternative conformal causal inference framework for analyzing cluster randomized trials that achieves the target inferential goal in finite samples without the need for asymptotic approximations. Different from traditional inference focusing on estimating the average treatment effect, our conformal causal inference aims to provide prediction intervals for the difference of counterfactual outcomes, thereby providing a new decision-making tool for clusters and individuals in the same target population. We prove that this framework is compatible with arbitrary working outcome models -- including data-adaptive machine learning methods that maximally leverage information from baseline covariates, and enjoys robustness against misspecification of working outcome models. Under our conformal causal inference framework, we develop efficient computation algorithms to construct prediction intervals for treatment effects at both the cluster and individual levels, and further extend to address inferential targets defined based on pre-specified covariate subgroups. Finally, we demonstrate the properties of our methods via simulations and a real data application based on a completed cluster randomized trial for treating chronic pain.
Although deep neural networks have achieved super-human performance on many classification tasks, they often exhibit a worrying lack of robustness towards adversarially generated examples. Thus, considerable effort has been invested into reformulating standard Risk Minimization (RM) into an adversarially robust framework. Recently, attention has shifted towards approaches which interpolate between the robustness offered by adversarial training and the higher clean accuracy and faster training times of RM. In this paper, we take a fresh and geometric view on one such method -- Probabilistically Robust Learning (PRL). We propose a mathematical framework for understanding PRL, which allows us to identify geometric pathologies in its original formulation and to introduce a family of probabilistic nonlocal perimeter functionals to rectify them. We prove existence of solutions to the original and modified problems using novel relaxation methods and also study properties, as well as local limits, of the introduced perimeters. We also clarify, through a suitable $\Gamma$-convergence analysis, the way in which the original and modified PRL models interpolate between risk minimization and adversarial training.
We present a streamlined and simplified exponential lower bound on the length of proofs in intuitionistic implicational logic, adapted to Gordeev and Haeusler's dag-like natural deduction.
Mediation analysis aims to identify and estimate the effect of an exposure on an outcome that is mediated through one or more intermediate variables. In the presence of multiple intermediate variables, two pertinent methodological questions arise: estimating mediated effects when mediators are correlated, and performing high-dimensional mediation analysis when the number of mediators exceeds the sample size. This paper presents a two-step procedure for high-dimensional mediation analysis. The first step selects a reduced number of candidate mediators using an ad-hoc lasso penalty. The second step applies a procedure we previously developed to estimate the mediated and direct effects, accounting for the correlation structure among the retained candidate mediators. We compare the performance of the proposed two-step procedure with state-of-the-art methods using simulated data. Additionally, we demonstrate its practical application by estimating the causal role of DNA methylation in the pathway between smoking and rheumatoid arthritis using real data.
Causal and nonparametric estimands in economics and biostatistics can often be viewed as the mean of a linear functional applied to an unknown outcome regression function. Naively learning the regression function and taking a sample mean of the target functional results in biased estimators, and a rich debiasing literature has developed where one additionally learns the so-called Riesz representer (RR) of the target estimand (targeted learning, double ML, automatic debiasing etc.). Learning the RR via its derived functional form can be challenging, e.g. due to extreme inverse probability weights or the need to learn conditional density functions. Such challenges have motivated recent advances in automatic debiasing (AD), where the RR is learned directly via minimization of a bespoke loss. We propose moment-constrained learning as a new RR learning approach that addresses some shortcomings in AD, constraining the predicted moments and improving the robustness of RR estimates to optimization hyperparamters. Though our approach is not tied to a particular class of learner, we illustrate it using neural networks, and evaluate on the problems of average treatment/derivative effect estimation using semi-synthetic data. Our numerical experiments show improved performance versus state of the art benchmarks.
To avoid ineffective collisions between the equilibrium states, the hybrid method with deviational particles (HDP) has been proposed to integrate the Fokker-Planck-Landau system, while leaving a new issue in sampling deviational particles from the high-dimensional source term. In this paper, we present an adaptive sampling (AS) strategy that first adaptively reconstructs a piecewise constant approximation of the source term based on sequential clustering via discrepancy estimation, and then samples deviational particles directly from the resulting adaptive piecewise constant function without rejection. The mixture discrepancy, which can be easily calculated thanks to its explicit analytical expression, is employed as a measure of uniformity instead of the star discrepancy the calculation of which is NP-hard. The resulting method, dubbed the HDP-AS method, runs approximately ten times faster than the HDP method while keeping the same accuracy in the Landau damping, two stream instability, bump on tail and Rosenbluth's test problem.
In the rapidly evolving field of artificial intelligence, convolutional neural networks are essential for tackling complex challenges such as machine vision and medical diagnosis. Recently, to address the challenges in processing speed and power consumption of conventional digital convolution operations, many optical components have been suggested to replace the digital convolution layer in the neural network, accelerating various machine vision tasks. Nonetheless, the analog nature of the optical convolution kernel has not been fully explored. Here, we develop a spatial frequency domain training method to create arbitrarily shaped analog convolution kernels using an optical metasurface as the convolution layer, with its receptive field largely surpassing digital convolution kernels. By employing spatial multiplexing, the multiple parallel convolution kernels with both positive and negative weights are generated under the incoherent illumination condition. We experimentally demonstrate a 98.59% classification accuracy on the MNIST dataset, with simulations showing 92.63% and 68.67% accuracy on the Fashion-MNIST and CIFAR-10 datasets with additional digital layers. This work underscores the unique advantage of analog optical convolution, offering a promising avenue to accelerate machine vision tasks, especially in edge devices.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.