亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The study of intelligent systems explains behaviour in terms of economic rationality. This results in an optimization principle involving a function or utility, which states that the system will evolve until the configuration of maximum utility is achieved. Recently, this theory has incorporated constraints, i.e., the optimum is achieved when the utility is maximized while respecting some information-processing constraints. This is reminiscent of thermodynamic systems. As such, the study of intelligent systems has benefited from the tools of thermodynamics. The first aim of this thesis is to clarify the applicability of these results in the study of intelligent systems. We can think of the local transition steps in thermodynamic or intelligent systems as being driven by uncertainty. In fact, the transitions in both systems can be described in terms of majorization. Hence, real-valued uncertainty measures like Shannon entropy are simply a proxy for their more involved behaviour. More in general, real-valued functions are fundamental to study optimization and complexity in the order-theoretic approach to several topics, including economics, thermodynamics, and quantum mechanics. The second aim of this thesis is to improve on this classification. The basic similarity between thermodynamic and intelligent systems is based on an uncertainty notion expressed by a preorder. We can also think of the transitions in the steps of a computational process as a decision-making procedure. In fact, by adding some requirements on the considered order structures, we can build an abstract model of uncertainty reduction that allows to incorporate computability, that is, to distinguish the objects that can be constructed by following a finite set of instructions from those that cannot. The third aim of this thesis is to clarify the requirements on the order structure that allow such a framework.

相關內容

醫學人工智能AIM(Artificial Intelligence in Medicine)雜志發表了多學科領域的原創文章,涉及醫學中的人工智能理論和實踐,以醫學為導向的人類生物學和衛生保健。醫學中的人工智能可以被描述為與研究、項目和應用相關的科學學科,旨在通過基于知識或數據密集型的計算機解決方案支持基于決策的醫療任務,最終支持和改善人類護理提供者的性能。 官網地址:

Forecasting dynamical systems is of importance to numerous real-world applications. When possible, dynamical systems forecasts are constructed based on first-principles-based models such as through the use of differential equations. When these equations are unknown, non-intrusive techniques must be utilized to build predictive models from data alone. Machine learning (ML) methods have recently been used for such tasks. Moreover, ML methods provide the added advantage of significant reductions in time-to-solution for predictions in contrast with first-principle based models. However, many state-of-the-art ML-based methods for forecasting rely on neural networks, which may be expensive to train and necessitate requirements for large amounts of memory. In this work, we propose a quantum mechanics inspired ML modeling strategy for learning nonlinear dynamical systems that provides data-driven forecasts for complex dynamical systems with reduced training time and memory costs. This approach, denoted the quantum reservoir computing technique (QRC), is a hybrid quantum-classical framework employing an ensemble of interconnected small quantum systems via classical linear feedback connections. By mapping the dynamical state to a suitable quantum representation amenable to unitary operations, QRC is able to predict complex nonlinear dynamical systems in a stable and accurate manner. We demonstrate the efficacy of this framework through benchmark forecasts of the NOAA Optimal Interpolation Sea Surface Temperature dataset and compare the performance of QRC to other ML methods.

Functions with singularities are notoriously difficult to approximate with conventional approximation schemes. In computational applications, they are often resolved with low-order piecewise polynomials, multilevel schemes, or other types of grading strategies. Rational functions are an exception to this rule: for univariate functions with point singularities, such as branch points, rational approximations exist with root-exponential convergence in the rational degree. This is typically enabled by the clustering of poles near the singularity. Both the theory and computational practice of rational functions for function approximation have focused on the univariate case, with extensions to two dimensions via identification with the complex plane. Multivariate rational functions, i.e., quotients of polynomials of several variables, are relatively unexplored in comparison. Yet, apart from a steep increase in theoretical complexity, they also offer a wealth of opportunities. A first observation is that singularities of multivariate rational functions may be continuous curves of poles, rather than isolated ones. By generalizing the clustering of poles from points to curves, we explore constructions of multivariate rational approximations to functions with curves of singularities.

The paper focuses on first-order invariant-domain preserving approximations of hyperbolic systems. We propose a new way to estimate the artificial viscosity that has to be added to make explicit, conservative, consistent numerical methods invariant-domain preserving and entropy inequality compliant. Instead of computing an upper bound on the maximum wave speed in Riemann problems, we estimate a minimum wave speed in the said Riemann problems such that the approximation satisfies predefined invariant-domain properties and predefined entropy inequalities. This technique eliminates non-essential fast waves from the construction of the artificial viscosity, while preserving pre-assigned invariant-domain properties and entropy inequalities.

We consider rather general structural equation models (SEMs) between a target and its covariates in several shifted environments. Given $k\in\N$ shifts we consider the set of shifts that are at most $\gamma$-times as strong as a given weighted linear combination of these $k$ shifts and the worst (quadratic) risk over this entire space. This worst risk has a nice decomposition which we refer to as the "worst risk decomposition". Then we find an explicit arg-min solution that minimizes the worst risk and consider its corresponding plug-in estimator which is the main object of this paper. This plug-in estimator is (almost surely) consistent and we first prove a concentration in measure result for it. The solution to the worst risk minimizer is rather reminiscent of the corresponding ordinary least squares solution in that it is product of a vector and an inverse of a Grammian matrix. Due to this, the central moments of the plug-in estimator is not well-defined in general, but we instead consider these moments conditioned on the Grammian inverse being bounded by some given constant. We also study conditional variance of the estimator with respect to a natural filtration for the incoming data. Similarly we consider the conditional covariance matrix with respect to this filtration and prove a bound for the determinant of this matrix. This SEM model generalizes the linear models that have been studied previously for instance in the setting of casual inference or anchor regression but the concentration in measure result and the moment bounds are new even in the linear setting.

Multi-fidelity machine learning methods address the accuracy-efficiency trade-off by integrating scarce, resource-intensive high-fidelity data with abundant but less accurate low-fidelity data. We propose a practical multi-fidelity strategy for problems spanning low- and high-dimensional domains, integrating a non-probabilistic regression model for the low-fidelity with a Bayesian model for the high-fidelity. The models are trained in a staggered scheme, where the low-fidelity model is transfer-learned to the high-fidelity data and a Bayesian model is trained for the residual. This three-model strategy -- deterministic low-fidelity, transfer learning, and Bayesian residual -- leads to a prediction that includes uncertainty quantification both for noisy and noiseless multi-fidelity data. The strategy is general and unifies the topic, highlighting the expressivity trade-off between the transfer-learning and Bayesian models (a complex transfer-learning model leads to a simpler Bayesian model, and vice versa). We propose modeling choices for two scenarios, and argue in favor of using a linear transfer-learning model that fuses 1) kernel ridge regression for low-fidelity with Gaussian processes for high-fidelity; or 2) deep neural network for low-fidelity with a Bayesian neural network for high-fidelity. We demonstrate the effectiveness and efficiency of the proposed strategies and contrast them with the state-of-the-art based on various numerical examples. The simplicity of these formulations makes them practical for a broad scope of future engineering applications.

High-dimensional compositional data are frequently encountered in many fields of modern scientific research. In regression analysis of compositional data, the presence of covariate measurement errors poses grand challenges for existing statistical error-in-variable regression analysis methods since measurement error in one component of the composition has an impact on others. To simultaneously address the compositional nature and measurement errors in the high-dimensional design matrix of compositional covariates, we propose a new method named Error-in-composition (Eric) Lasso for regression analysis of corrupted compositional predictors. Estimation error bounds of Eric Lasso and its asymptotic sign-consistent selection properties are established. We then illustrate the finite sample performance of Eric Lasso using simulation studies and demonstrate its potential usefulness in a real data application example.

The use of variable grid BDF methods for parabolic equations leads to structures that are called variable (coefficient) Toeplitz. Here, we consider a more general class of matrix-sequences and we prove that they belong to the maximal $*$-algebra of generalized locally Toeplitz (GLT) matrix-sequences. Then, we identify the associated GLT symbols in the general setting and in the specific case, by providing in both cases a spectral and singular value analysis. More specifically, we use the GLT tools in order to study the asymptotic behaviour of the eigenvalues and singular values of the considered BDF matrix-sequences, in connection with the given non-uniform grids. Numerical examples, visualizations, and open problems end the present work.

We present a generalization of the discrete Lehmann representation (DLR) to three-point correlation and vertex functions in imaginary time and Matsubara frequency. The representation takes the form of a linear combination of judiciously chosen exponentials in imaginary time, and products of simple poles in Matsubara frequency, which are universal for a given temperature and energy cutoff. We present a systematic algorithm to generate compact sampling grids, from which the coefficients of such an expansion can be obtained by solving a linear system. We show that the explicit form of the representation can be used to evaluate diagrammatic expressions involving infinite Matsubara sums, such as polarization functions or self-energies, with controllable, high-order accuracy. This collection of techniques establishes a framework through which methods involving three-point objects can be implemented robustly, with a substantially reduced computational cost and memory footprint.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司