亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Millimeter wave (mmWave) cell-free MIMO achieves an extremely high rate while its beam alignment (BA) suffers from excessive overhead due to a large number of transceivers. Recently, user location and probing measurements are utilized for BA based on machine learning (ML) models, e.g., deep neural network (DNN). However, most of these ML models are centralized with high communication and computational overhead and give no specific consideration to practical issues, e.g., limited training data and real-time model updates. In this paper, we study the {probing} beam-based BA for mmWave cell-free MIMO downlink with the help of broad learning (BL). For channels without and with uplink-downlink reciprocity, we propose the user-side and base station (BS)-side BL-aided incremental collaborative BA approaches. Via transforming the centralized BL into a distributed learning with data and feature splitting respectively, the user-side and BS-side schemes realize implicit sharing of multiple user data and multiple BS features. Simulations confirm that the user-side scheme is applicable to fast time-varying and/or non-stationary channels, while the BS-side scheme is suitable for systems with low-bandwidth fronthaul links and a central unit with limited computing power. The advantages of proposed schemes are also demonstrated compared to traditional and DNN-aided BA schemes.

相關內容

Visible-infrared person re-identification (VI-ReID) is a challenging task due to large cross-modality discrepancies and intra-class variations. Existing methods mainly focus on learning modality-shared representations by embedding different modalities into the same feature space. As a result, the learned feature emphasizes the common patterns across modalities while suppressing modality-specific and identity-aware information that is valuable for Re-ID. To address these issues, we propose a novel Modality Unifying Network (MUN) to explore a robust auxiliary modality for VI-ReID. First, the auxiliary modality is generated by combining the proposed cross-modality learner and intra-modality learner, which can dynamically model the modality-specific and modality-shared representations to alleviate both cross-modality and intra-modality variations. Second, by aligning identity centres across the three modalities, an identity alignment loss function is proposed to discover the discriminative feature representations. Third, a modality alignment loss is introduced to consistently reduce the distribution distance of visible and infrared images by modality prototype modeling. Extensive experiments on multiple public datasets demonstrate that the proposed method surpasses the current state-of-the-art methods by a significant margin.

The paper proposes a new approach to minimize the number of relays while maximizing the lifetime of underwater acoustic sensor networks (UASNs). This involves formulating the relay node placement (RNP) problem as a multi-objective optimization problem and employing the multi-objective lexico-graphic method (MOLM) to solve it. To achieve the optimal solution, the MOLM consists of two steps. First, the problem of lifetime maximization is tackled to find RNP solutions. This transforms the RNP into a non-convex optimization problem which is then converted into a convex programming equivalent. The proposed method has the same computational complexity as previous relay-node adjustment (RA) and difference convex algorithm (DCA) methods. The second step introduces a novel relay node selection to reach the optimal number of relays. Simulation results demonstrate that it has superior network lifetime and efficiency compared to RA and DCA.

Non-orthogonal multiple access (NOMA) is a promising transmission scheme employed at the physical layer to improve the spectral efficiency. In this paper, we develop a novel cross-layer approach by employing NOMA at the physical layer and instantly decodable network coding (IDNC) at the network layer in downlink cellular networks. Following this approach, two IDNC packets are selected for each transmission, with one designed for all receivers and the other designed only for the strong receivers which can employ successive interference cancellation (SIC). The IDNC packets selection, transmission rates adaption for the two IDNC packets, and NOMA power allocation are jointly considered to improve the throughput of the network. Given the intractability of the problem, we decouple it into two separate subproblems, the IDNC scheduling which jointly selects the IDNC packets and the transmission rates with the given NOMA power allocation, and the NOMA power allocation with the given IDNC scheduling. The IDNC scheduling can be reduced to a maximum weight clique problem, and two heuristic algorithms named as maximum weight vertex (MWV) search and maximum weight path based maximum weight vertex (MWP-MWV) search are developed to solve the first subproblem. An iterative function evaluation (IFE) approach is proposed to solve the second subproblem. Simulation results are presented to demonstrates the throughput gain of the proposed approach over the existing solutions.

Entanglement assistance can improve communication rates significantly. Yet, its generation is susceptible to failure. The unreliable assistance model accounts for those challenges. Previous work provided an asymptotic formula that outlines the tradeoff between the unassisted and excess rates from entanglement assistance. We derive a full characterization for entanglement-breaking channels, and show that combining entanglement-assisted and unassisted coding is suboptimal. From a networking perspective, this finding is nontrivial and highlights a quantum behavior arising from superposition.

The predictions of Large Language Models (LLMs) on downstream tasks often improve significantly when including examples of the input--label relationship in the context. However, there is currently no consensus about how this in-context learning (ICL) ability of LLMs works. For example, while Xie et al. (2021) liken ICL to a general-purpose learning algorithm, Min et al. (2022) argue ICL does not even learn label relationships from in-context examples. In this paper, we provide novel insights into how ICL leverages label information, revealing both capabilities and limitations. To ensure we obtain a comprehensive picture of ICL behavior, we study probabilistic aspects of ICL predictions and thoroughly examine the dynamics of ICL as more examples are provided. Our experiments show that ICL predictions almost always depend on in-context labels, and that ICL can learn truly novel tasks in-context. However, we also find that ICL struggles to fully overcome prediction preferences acquired from pre-training data, and, further, that ICL does not consider all in-context information equally.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司