亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a theoretical framework to analyze semi-supervised classification under the low density separation assumption in a high-dimensional regime. In particular, we introduce QLDS, a linear classification model, where the low density separation assumption is implemented via quadratic margin maximization. The algorithm has an explicit solution with rich theoretical properties, and we show that particular cases of our algorithm are the least-square support vector machine in the supervised case, the spectral clustering in the fully unsupervised regime, and a class of semi-supervised graph-based approaches. As such, QLDS establishes a smooth bridge between these supervised and unsupervised learning methods. Using recent advances in the random matrix theory, we formally derive a theoretical evaluation of the classification error in the asymptotic regime. As an application, we derive a hyperparameter selection policy that finds the best balance between the supervised and the unsupervised terms of our learning criterion. Finally, we provide extensive illustrations of our framework, as well as an experimental study on several benchmarks to demonstrate that QLDS, while being computationally more efficient, improves over cross-validation for hyperparameter selection, indicating a high promise of the usage of random matrix theory for semi-supervised model selection.

相關內容

Code provides a general syntactic structure to build complex programs and perform precise computations when paired with a code interpreter - we hypothesize that language models (LMs) can leverage code-writing to improve Chain of Thought reasoning not only for logic and arithmetic tasks, but also for semantic ones (and in particular, those that are a mix of both). For example, consider prompting an LM to write code that counts the number of times it detects sarcasm in an essay: the LM may struggle to write an implementation for "detect_sarcasm(string)" that can be executed by the interpreter (handling the edge cases would be insurmountable). However, LMs may still produce a valid solution if they not only write code, but also selectively "emulate" the interpreter by generating the expected output of "detect_sarcasm(string)" and other lines of code that cannot be executed. In this work, we propose Chain of Code (CoC), a simple yet surprisingly effective extension that improves LM code-driven reasoning. The key idea is to encourage LMs to format semantic sub-tasks in a program as flexible pseudocode that the interpreter can explicitly catch undefined behaviors and hand off to simulate with an LM (as an "LMulator"). Experiments demonstrate that Chain of Code outperforms Chain of Thought and other baselines across a variety of benchmarks; on BIG-Bench Hard, Chain of Code achieves 84%, a gain of 12% over Chain of Thought. CoC scales well with large and small models alike, and broadens the scope of reasoning questions that LMs can correctly answer by "thinking in code". Project webpage: //chain-of-code.github.io.

With the constant spread of misinformation on social media networks, a need has arisen to continuously assess the veracity of digital content. This need has inspired numerous research efforts on the development of misinformation detection (MD) models. However, many models do not use all information available to them and existing research contains a lack of relevant datasets to train the models, specifically within the South African social media environment. The aim of this paper is to investigate the transferability of knowledge of a MD model between different contextual environments. This research contributes a multimodal MD model capable of functioning in the South African social media environment, as well as introduces a South African misinformation dataset. The model makes use of multiple sources of information for misinformation detection, namely: textual and visual elements. It uses bidirectional encoder representations from transformers (BERT) as the textual encoder and a residual network (ResNet) as the visual encoder. The model is trained and evaluated on the Fakeddit dataset and a South African misinformation dataset. Results show that using South African samples in the training of the model increases model performance, in a South African contextual environment, and that a multimodal model retains significantly more knowledge than both the textual and visual unimodal models. Our study suggests that the performance of a misinformation detection model is influenced by the cultural nuances of its operating environment and multimodal models assist in the transferability of knowledge between different contextual environments. Therefore, local data should be incorporated into the training process of a misinformation detection model in order to optimize model performance.

Stable diffusion is the mainstay of the text-to-image (T2I) synthesis in the community due to its generation performance and open-source nature. Recently, Stable Diffusion XL (SDXL), the successor of stable diffusion, has received a lot of attention due to its significant performance improvements with a higher resolution of 1024x1024 and a larger model. However, its increased computation cost and model size require higher-end hardware(e.g., bigger VRAM GPU) for end-users, incurring higher costs of operation. To address this problem, in this work, we propose an efficient latent diffusion model for text-to-image synthesis obtained by distilling the knowledge of SDXL. To this end, we first perform an in-depth analysis of the denoising U-Net in SDXL, which is the main bottleneck of the model, and then design a more efficient U-Net based on the analysis. Secondly, we explore how to effectively distill the generation capability of SDXL into an efficient U-Net and eventually identify four essential factors, the core of which is that self-attention is the most important part. With our efficient U-Net and self-attention-based knowledge distillation strategy, we build our efficient T2I models, called KOALA-1B & -700M, while reducing the model size up to 54% and 69% of the original SDXL model. In particular, the KOALA-700M is more than twice as fast as SDXL while still retaining a decent generation quality. We hope that due to its balanced speed-performance tradeoff, our KOALA models can serve as a cost-effective alternative to SDXL in resource-constrained environments.

Reliable and efficient trajectory optimization methods are a fundamental need for autonomous dynamical systems, effectively enabling applications including rocket landing, hypersonic reentry, spacecraft rendezvous, and docking. Within such safety-critical application areas, the complexity of the emerging trajectory optimization problems has motivated the application of AI-based techniques to enhance the performance of traditional approaches. However, current AI-based methods either attempt to fully replace traditional control algorithms, thus lacking constraint satisfaction guarantees and incurring in expensive simulation, or aim to solely imitate the behavior of traditional methods via supervised learning. To address these limitations, this paper proposes the Autonomous Rendezvous Transformer (ART) and assesses the capability of modern generative models to solve complex trajectory optimization problems, both from a forecasting and control standpoint. Specifically, this work assesses the capabilities of Transformers to (i) learn near-optimal policies from previously collected data, and (ii) warm-start a sequential optimizer for the solution of non-convex optimal control problems, thus guaranteeing hard constraint satisfaction. From a forecasting perspective, results highlight how ART outperforms other learning-based architectures at predicting known fuel-optimal trajectories. From a control perspective, empirical analyses show how policies learned through Transformers are able to generate near-optimal warm-starts, achieving trajectories that are (i) more fuel-efficient, (ii) obtained in fewer sequential optimizer iterations, and (iii) computed with an overall runtime comparable to benchmarks based on convex optimization.

We study functional dependencies together with two different probabilistic dependency notions: unary marginal identity and unary marginal distribution equivalence. A unary marginal identity states that two variables x and y are identically distributed. A unary marginal distribution equivalence states that the multiset consisting of the marginal probabilities of all the values for variable x is the same as the corresponding multiset for y. We present a sound and complete axiomatization for the class of these dependencies and show that it has Armstrong relations. The axiomatization is infinite, but we show that there can be no finite axiomatization. The implication problem for the subclass that contains only functional dependencies and unary marginal identities can be simulated with functional dependencies and unary inclusion atoms, and therefore the problem is in polynomial-time. This complexity bound also holds in the case of the full class, which we show by constructing a polynomial-time algorithm.

The Knapsack Problem is a classic problem in combinatorial optimisation. Solving these problems may be computationally expensive. Recent years have seen a growing interest in the use of deep learning methods to approximate the solutions to such problems. A core problem is how to enforce or encourage constraint satisfaction in predicted solutions. A promising approach for predicting solutions to constrained optimisation problems is the Lagrangian Dual Framework which builds on the method of Lagrangian Relaxation. In this paper we develop neural network models to approximate Knapsack Problem solutions using the Lagrangian Dual Framework while improving constraint satisfaction. We explore the problems of output interpretation and model selection within this context. Experimental results show strong constraint satisfaction with a minor reduction of optimality as compared to a baseline neural network which does not explicitly model the constraints.

We demonstrate how conditional generation from diffusion models can be used to tackle a variety of realistic tasks in the production of music in 44.1kHz stereo audio with sampling-time guidance. The scenarios we consider include continuation, inpainting and regeneration of musical audio, the creation of smooth transitions between two different music tracks, and the transfer of desired stylistic characteristics to existing audio clips. We achieve this by applying guidance at sampling time in a simple framework that supports both reconstruction and classification losses, or any combination of the two. This approach ensures that generated audio can match its surrounding context, or conform to a class distribution or latent representation specified relative to any suitable pre-trained classifier or embedding model. Audio samples are available at //machinelearning.apple.com/research/controllable-music

The integration of multi-omics data has emerged as a promising approach for gaining comprehensive insights into complex diseases such as cancer. This paper proposes a novel approach to identify cancer subtypes through the integration of multi-omics data for clustering. The proposed method, named LIDAF utilises affinity matrices based on linear relationships between and within different omics datasets (Linear Inter and Intra Dataset Affinity Fusion (LIDAF)). Canonical Correlation Analysis is in this paper employed to create distance matrices based on Euclidean distances between canonical variates. The distance matrices are converted to affinity matrices and those are fused in a three-step process. The proposed LIDAF addresses the limitations of the existing method resulting in improvement of clustering performance as measured by the Adjusted Rand Index and the Normalized Mutual Information score. Moreover, our proposed LIDAF approach demonstrates a notable enhancement in 50% of the log10 rank p-values obtained from Cox survival analysis, surpassing the performance of the best reported method, highlighting its potential of identifying distinct cancer subtypes.

The subgraph isomorphism finding problem is a well-studied problem in the field of computer science and graph theory, and it aims to enumerate all instances of a query graph in the respective data graph. In this paper, we propose an efficient method, SubISO, to find subgraph isomorphisms using an objective function, which exploits some isomorphic invariants and eccentricity of the query graph's vertices. The proposed objective function is used to determine pivot vertex, which minimizes both number and size of the candidate regions in the data graph. SubISO also limits the maximum recursive calls of the generic SubgraphSearch function to deal with straggler queries for which most of the existing algorithms show exponential behaviour. The proposed approach is evaluated over three benchmark datasets. It is also compared with three well known subgraph isomorphism finding algorithms in terms of execution time, number of identified embeddings, and ability to deal with the straggler queries, and it performs significantly better.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

北京阿比特科技有限公司