亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most of the existing neural video compression methods adopt the predictive coding framework, which first generates the predicted frame and then encodes its residue with the current frame. However, as for compression ratio, predictive coding is only a sub-optimal solution as it uses simple subtraction operation to remove the redundancy across frames. In this paper, we propose a deep contextual video compression framework to enable a paradigm shift from predictive coding to conditional coding. In particular, we try to answer the following questions: how to define, use, and learn condition under a deep video compression framework. To tap the potential of conditional coding, we propose using feature domain context as condition. This enables us to leverage the high dimension context to carry rich information to both the encoder and the decoder, which helps reconstruct the high-frequency contents for higher video quality. Our framework is also extensible, in which the condition can be flexibly designed. Experiments show that our method can significantly outperform the previous state-of-the-art (SOTA) deep video compression methods. When compared with x265 using veryslow preset, we can achieve 26.0% bitrate saving for 1080P standard test videos.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Networking · GAN · state-of-the-art · 生成式對抗網絡 ·
2021 年 11 月 23 日

We present the first neural video compression method based on generative adversarial networks (GANs). Our approach significantly outperforms previous neural and non-neural video compression methods in a user study, setting a new state-of-the-art in visual quality for neural methods. We show that the GAN loss is crucial to obtain this high visual quality. Two components make the GAN loss effective: we i) synthesize detail by conditioning the generator on a latent extracted from the warped previous reconstruction to then ii) propagate this detail with high-quality flow. We find that user studies are required to compare methods, i.e., none of our quantitative metrics were able to predict all studies. We present the network design choices in detail, and ablate them with user studies.

Video generation is an interesting problem in computer vision. It is quite popular for data augmentation, special effect in move, AR/VR and so on. With the advances of deep learning, many deep generative models have been proposed to solve this task. These deep generative models provide away to utilize all the unlabeled images and videos online, since it can learn deep feature representations with unsupervised manner. These models can also generate different kinds of images, which have great value for visual application. However generating a video would be much more challenging since we need to model not only the appearances of objects in the video but also their temporal motion. In this work, we will break down any frame in the video into content and pose. We first extract the pose information from a video using a pre-trained human pose detection and use a generative model to synthesize the video based on the content code and pose code.

We introduce a video compression algorithm based on instance-adaptive learning. On each video sequence to be transmitted, we finetune a pretrained compression model. The optimal parameters are transmitted to the receiver along with the latent code. By entropy-coding the parameter updates under a suitable mixture model prior, we ensure that the network parameters can be encoded efficiently. This instance-adaptive compression algorithm is agnostic about the choice of base model and has the potential to improve any neural video codec. On UVG, HEVC, and Xiph datasets, our codec improves the performance of a low-latency scale-space flow model by between 21% and 26% BD-rate savings, and that of a state-of-the-art B-frame model by 17 to 20% BD-rate savings. We also demonstrate that instance-adaptive finetuning improves the robustness to domain shift. Finally, our approach reduces the capacity requirements on compression models. We show that it enables a state-of-the-art performance even after reducing the network size by 72%.

Dense video captioning (DVC) aims to generate multi-sentence descriptions to elucidate the multiple events in the video, which is challenging and demands visual consistency, discoursal coherence, and linguistic diversity. Existing methods mainly generate captions from individual video segments, lacking adaptation to the global visual context and progressive alignment between the fast-evolved visual content and textual descriptions, which results in redundant and spliced descriptions. In this paper, we introduce the concept of information flow to model the progressive information changing across video sequence and captions. By designing a Cross-modal Information Flow Alignment mechanism, the visual and textual information flows are captured and aligned, which endows the captioning process with richer context and dynamics on event/topic evolution. Based on the Cross-modal Information Flow Alignment module, we further put forward DVCFlow framework, which consists of a Global-local Visual Encoder to capture both global features and local features for each video segment, and a pre-trained Caption Generator to produce captions. Extensive experiments on the popular ActivityNet Captions and YouCookII datasets demonstrate that our method significantly outperforms competitive baselines, and generates more human-like text according to subject and objective tests.

Video instance segmentation (VIS) is the task that requires simultaneously classifying, segmenting and tracking object instances of interest in video. Recent methods typically develop sophisticated pipelines to tackle this task. Here, we propose a new video instance segmentation framework built upon Transformers, termed VisTR, which views the VIS task as a direct end-to-end parallel sequence decoding/prediction problem. Given a video clip consisting of multiple image frames as input, VisTR outputs the sequence of masks for each instance in the video in order directly. At the core is a new, effective instance sequence matching and segmentation strategy, which supervises and segments instances at the sequence level as a whole. VisTR frames the instance segmentation and tracking in the same perspective of similarity learning, thus considerably simplifying the overall pipeline and is significantly different from existing approaches. Without bells and whistles, VisTR achieves the highest speed among all existing VIS models, and achieves the best result among methods using single model on the YouTube-VIS dataset. For the first time, we demonstrate a much simpler and faster video instance segmentation framework built upon Transformers, achieving competitive accuracy. We hope that VisTR can motivate future research for more video understanding tasks.

In recent years, deep learning has made great progress in many fields such as image recognition, natural language processing, speech recognition and video super-resolution. In this survey, we comprehensively investigate 33 state-of-the-art video super-resolution (VSR) methods based on deep learning. It is well known that the leverage of information within video frames is important for video super-resolution. Thus we propose a taxonomy and classify the methods into six sub-categories according to the ways of utilizing inter-frame information. Moreover, the architectures and implementation details of all the methods are depicted in detail. Finally, we summarize and compare the performance of the representative VSR method on some benchmark datasets. We also discuss some challenges, which need to be further addressed by researchers in the community of VSR. To the best of our knowledge, this work is the first systematic review on VSR tasks, and it is expected to make a contribution to the development of recent studies in this area and potentially deepen our understanding to the VSR techniques based on deep learning.

Typical techniques for video captioning follow the encoder-decoder framework, which can only focus on one source video being processed. A potential disadvantage of such design is that it cannot capture the multiple visual context information of a word appearing in more than one relevant videos in training data. To tackle this limitation, we propose the Memory-Attended Recurrent Network (MARN) for video captioning, in which a memory structure is designed to explore the full-spectrum correspondence between a word and its various similar visual contexts across videos in training data. Thus, our model is able to achieve a more comprehensive understanding for each word and yield higher captioning quality. Furthermore, the built memory structure enables our method to model the compatibility between adjacent words explicitly instead of asking the model to learn implicitly, as most existing models do. Extensive validation on two real-word datasets demonstrates that our MARN consistently outperforms state-of-the-art methods.

Dense video captioning is an extremely challenging task since accurate and coherent description of events in a video requires holistic understanding of video contents as well as contextual reasoning of individual events. Most existing approaches handle this problem by first detecting event proposals from a video and then captioning on a subset of the proposals. As a result, the generated sentences are prone to be redundant or inconsistent since they fail to consider temporal dependency between events. To tackle this challenge, we propose a novel dense video captioning framework, which models temporal dependency across events in a video explicitly and leverages visual and linguistic context from prior events for coherent storytelling. This objective is achieved by 1) integrating an event sequence generation network to select a sequence of event proposals adaptively, and 2) feeding the sequence of event proposals to our sequential video captioning network, which is trained by reinforcement learning with two-level rewards at both event and episode levels for better context modeling. The proposed technique achieves outstanding performances on ActivityNet Captions dataset in most metrics.

Dense video captioning is a newly emerging task that aims at both localizing and describing all events in a video. We identify and tackle two challenges on this task, namely, (1) how to utilize both past and future contexts for accurate event proposal predictions, and (2) how to construct informative input to the decoder for generating natural event descriptions. First, previous works predominantly generate temporal event proposals in the forward direction, which neglects future video context. We propose a bidirectional proposal method that effectively exploits both past and future contexts to make proposal predictions. Second, different events ending at (nearly) the same time are indistinguishable in the previous works, resulting in the same captions. We solve this problem by representing each event with an attentive fusion of hidden states from the proposal module and video contents (e.g., C3D features). We further propose a novel context gating mechanism to balance the contributions from the current event and its surrounding contexts dynamically. We empirically show that our attentively fused event representation is superior to the proposal hidden states or video contents alone. By coupling proposal and captioning modules into one unified framework, our model outperforms the state-of-the-arts on the ActivityNet Captions dataset with a relative gain of over 100% (Meteor score increases from 4.82 to 9.65).

The best summary of a long video differs among different people due to its highly subjective nature. Even for the same person, the best summary may change with time or mood. In this paper, we introduce the task of generating customized video summaries through simple text. First, we train a deep architecture to effectively learn semantic embeddings of video frames by leveraging the abundance of image-caption data via a progressive and residual manner. Given a user-specific text description, our algorithm is able to select semantically relevant video segments and produce a temporally aligned video summary. In order to evaluate our textually customized video summaries, we conduct experimental comparison with baseline methods that utilize ground-truth information. Despite the challenging baselines, our method still manages to show comparable or even exceeding performance. We also show that our method is able to generate semantically diverse video summaries by only utilizing the learned visual embeddings.

北京阿比特科技有限公司