亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The analysis of mapping relationships and distortions in multidimensional data poses a significant challenge in contemporary research. While Beltrami coefficients offer a precise description of distortions in two-dimensional mappings, current tools lack this capability in the context of three-dimensional space. This paper presents a novel approach: a 3D quasiconformal representation that captures the local dilation of 3D mappings, along with an algorithm that establishes a connection between this representation and the corresponding mapping. Experimental results showcase the algorithm's effectiveness in eliminating foldings in 3D mappings, as well as in mapping reconstruction and generation. These features bear a resemblance to the 2D Linear Beltrami Solver technique. The work presented in this paper offers a promising solution for the precise analysis and adjustment of distortions in 3D data and mappings.

相關內容

3D是(shi)(shi)英文“Three Dimensions”的簡稱,中文是(shi)(shi)指三維、三個(ge)維度、三個(ge)坐(zuo)標(biao),即有長、有寬、有高,換句話(hua)說,就是(shi)(shi)立體的,是(shi)(shi)相對于只有長和寬的平面(mian)(2D)而言。

We analyse the typical structure of games in terms of the connectivity properties of their best-response graphs. In particular, we show that almost every 'large' generic game that has a pure Nash equilibrium is connected, meaning that every non-equilibrium action profile can reach every pure Nash equilibrium via best-response paths. This has implications for dynamics in games: many adaptive dynamics, such as the best-response dynamic with inertia, lead to equilibrium in connected games. It follows that there are simple, uncoupled, adaptive dynamics for which period-by-period play converges almost surely to a pure Nash equilibrium in almost every 'large' generic game that has one. We build on recent results in probabilistic combinatorics for our characterisation of game connectivity.

We introduce Contextual Vision Transformers (ContextViT), a method designed to generate robust image representations for datasets experiencing shifts in latent factors across various groups. Derived from the concept of in-context learning, ContextViT incorporates an additional context token to encapsulate group-specific information. This integration allows the model to adjust the image representation in accordance with the group-specific context. Specifically, for a given input image, ContextViT maps images with identical group membership into this context token, which is appended to the input image tokens. Additionally, we introduce a context inference network to predict such tokens on-the-fly, given a batch of samples from the group. This enables ContextViT to adapt to new testing distributions during inference time. We demonstrate the efficacy of ContextViT across a wide range of applications. In supervised fine-tuning, we show that augmenting pre-trained ViTs with our proposed context conditioning mechanism results in consistent improvements in out-of-distribution generalization on iWildCam and FMoW. We also investigate self-supervised representation learning with ContextViT. Our experiments on the Camelyon17 pathology imaging benchmark and the JUMP-CP microscopy imaging benchmark demonstrate that ContextViT excels in learning stable image featurizations amidst distribution shift, consistently outperforming its ViT counterpart.

Testing with randomly generated inputs (fuzzing) has gained significant traction due to its capacity to expose program vulnerabilities automatically. Fuzz testing campaigns generate large amounts of data, making them ideal for the application of machine learning (ML). Neural program smoothing (NPS), a specific family of ML-guided fuzzers, aims to use a neural network as a smooth approximation of the program target for new test case generation. In this paper, we conduct the most extensive evaluation of NPS fuzzers against standard gray-box fuzzers (>11 CPU years and >5.5 GPU years), and make the following contributions: (1) We find that the original performance claims for NPS fuzzers do not hold; a gap we relate to fundamental, implementation, and experimental limitations of prior works. (2) We contribute the first in-depth analysis of the contribution of machine learning and gradient-based mutations in NPS. (3) We implement Neuzz++, which shows that addressing the practical limitations of NPS fuzzers improves performance, but that standard gray-box fuzzers almost always surpass NPS-based fuzzers. (4) As a consequence, we propose new guidelines targeted at benchmarking fuzzing based on machine learning, and present MLFuzz, a platform with GPU access for easy and reproducible evaluation of ML-based fuzzers. Neuzz++, MLFuzz, and all our data are public.

This paper develops the exact linear relationship between the leading eigenvector of the unnormalized modularity matrix and the eigenvectors of the adjacency matrix. We propose a method for approximating the leading eigenvector of the modularity matrix, and we derive the error of the approximation. There is also a complete proof of the equivalence between normalized adjacency clustering and normalized modularity clustering. Numerical experiments show that normalized adjacency clustering can be as twice efficient as normalized modularity clustering.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

北京阿比特科技有限公司