亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Approximation fixpoint theory (AFT) is an abstract and general algebraic framework for studying the semantics of non-monotonic logics. In recent work, AFT was generalized to non-deterministic operators, i.e.\ operators whose range are sets of elements rather than single elements. In this paper, we make three further contributions to non-deterministic AFT: (1) we define and study ultimate approximations of non-deterministic operators, (2) we give an algebraic formulation of the semi-equilibrium semantics by Amendola, et al., and (3) we generalize the characterisations of disjunctive logic programs to disjunctive logic programs with aggregates.

相關內容

Spoken dialogue systems (SDSs) have been separately developed under two different categories, task-oriented and chit-chat. The former focuses on achieving functional goals and the latter aims at creating engaging social conversations without special goals. Creating a unified conversational model that can engage in both chit-chat and task-oriented dialogue is a promising research topic in recent years. However, the potential ``initiative'' that occurs when there is a change between dialogue modes in one dialogue has rarely been explored. In this work, we investigate two kinds of dialogue scenarios, one starts from chit-chat implicitly involving task-related topics and finally switching to task-oriented requests; the other starts from task-oriented interaction and eventually changes to casual chat after all requested information is provided. We contribute two efficient prompt models which can proactively generate a transition sentence to trigger system-initiated transitions in a unified dialogue model. One is a discrete prompt model trained with two discrete tokens, the other one is a continuous prompt model using continuous prompt embeddings automatically generated by a classifier. We furthermore show that the continuous prompt model can also be used to guide the proactive transitions between particular domains in a multi-domain task-oriented setting.

In the signal plus noise model, it is of interest to quantify the evidence that a signal is active given conditionally independent replicate observations $Y_j = X + \varepsilon_j$ on the signal $X$ at a particular site. We study the problem in which the signal distribution is sparse, and the error distribution has an unknown variance so that the null distribution of the standardized statistic is Student-$t$. The main contribution of this paper is a sparse-mixture approximation to the non-null marginal density of the $t$-ratio. This formula demonstrates the effect of low degrees of freedom on the Bayes factor, or the conditional probability that the site is active. We illustrate some differences on a HIV dataset for gene-expression data previously analyzed by Efron, 2012.

Various neural network architectures rely on pooling operators to aggregate information coming from different sources. It is often implicitly assumed in such contexts that vectors encode epistemic states, i.e. that vectors capture the evidence that has been obtained about some properties of interest, and that pooling these vectors yields a vector that combines this evidence. We study, for a number of standard pooling operators, under what conditions they are compatible with this idea, which we call the epistemic pooling principle. While we find that all the considered pooling operators can satisfy the epistemic pooling principle, this only holds when embeddings are sufficiently high-dimensional and, for most pooling operators, when the embeddings satisfy particular constraints (e.g. having non-negative coordinates). We furthermore show that these constraints have important implications on how the embeddings can be used in practice. In particular, we find that when the epistemic pooling principle is satisfied, in most cases it is impossible to verify the satisfaction of propositional formulas using linear scoring functions, with two exceptions: (i) max-pooling with embeddings that are upper-bounded and (ii) Hadamard pooling with non-negative embeddings. This finding helps to clarify, among others, why Graph Neural Networks sometimes under-perform in reasoning tasks. Finally, we also study an extension of the epistemic pooling principle to weighted epistemic states, which are important in the context of non-monotonic reasoning, where max-pooling emerges as the most suitable operator.

The current approach for testing the robustness of object detectors suffers from serious deficiencies such as improper methods of performing out-of-distribution detection and using calibration metrics which do not consider both localisation and classification quality. In this work, we address these issues, and introduce the Self-Aware Object Detection (SAOD) task, a unified testing framework which respects and adheres to the challenges that object detectors face in safety-critical environments such as autonomous driving. Specifically, the SAOD task requires an object detector to be: robust to domain shift; obtain reliable uncertainty estimates for the entire scene; and provide calibrated confidence scores for the detections. We extensively use our framework, which introduces novel metrics and large scale test datasets, to test numerous object detectors in two different use-cases, allowing us to highlight critical insights into their robustness performance. Finally, we introduce a simple baseline for the SAOD task, enabling researchers to benchmark future proposed methods and move towards robust object detectors which are fit for purpose. Code is available at //github.com/fiveai/saod

This paper explores two topics at once: the use of denotational semantics to bound the evaluation length of functional programs, and the semantics of strong (that is, possibly under abstractions) call-by-value evaluation. About the first, we analyze de Carvalho's seminal use of relational semantics for bounding the evaluation length of lambda-terms, starting from the presentation of the semantics as an intersection types system. We focus on the part of his work which is usually neglected in its many recent adaptations, despite being probably the conceptually deeper one: how to transfer the bounding power from the type system to the relational semantics itself. We dissect this result and re-understand it via the isolation of a simpler size representation property. About the second, we use relational semantics to develop a semantical study of strong call-by-value evaluation, which is both a delicate and neglected topic. We give a semantic characterization of terms normalizable with respect to strong evaluation, providing in particular the first result of adequacy with respect to strong call-by-value. Moreover, we extract bounds about strong evaluation from both the type systems and the relational semantics. Essentially, we use strong call-by-value to revisit de Carvalho's semantic bounds, and de Carvalho's technique to provide semantical foundations for strong call-by-value.

Recent advances in deep learning have shown that uncertainty estimation is becoming increasingly important in applications such as medical imaging, natural language processing, and autonomous systems. However, accurately quantifying uncertainty remains a challenging problem, especially in regression tasks where the output space is continuous. Deep learning approaches that allow uncertainty estimation for regression problems often converge slowly and yield poorly calibrated uncertainty estimates that can not be effectively used for quantification. Recently proposed post hoc calibration techniques are seldom applicable to regression problems and often add overhead to an already slow model training phase. This work presents a fast calibrated uncertainty estimation method for regression tasks called Likelihood Annealing, that consistently improves the convergence of deep regression models and yields calibrated uncertainty without any post hoc calibration phase. Unlike previous methods for calibrated uncertainty in regression that focus only on low-dimensional regression problems, our method works well on a broad spectrum of regression problems, including high-dimensional regression.Our empirical analysis shows that our approach is generalizable to various network architectures, including multilayer perceptrons, 1D/2D convolutional networks, and graph neural networks, on five vastly diverse tasks, i.e., chaotic particle trajectory denoising, physical property prediction of molecules using 3D atomistic representation, natural image super-resolution, and medical image translation using MRI.

Optimizations premised on open-loop metrics such as Age of Information (AoI) indirectly enhance the system's decision-making utility. We therefore propose a novel closed-loop metric named Goal-oriented Tensor (GoT) to directly quantify the impact of semantic mismatches on goal-oriented decision-making utility. Leveraging the GoT, we consider a sampler & decision-maker pair that works collaboratively and distributively to achieve a shared goal of communications. We formulate a two-agent infinite-horizon Decentralized Partially Observable Markov Decision Process (Dec-POMDP) to conjointly deduce the optimal deterministic sampling policy and decision-making policy. To circumvent the curse of dimensionality in obtaining an optimal deterministic joint policy through Brute-Force-Search, a sub-optimal yet computationally efficient algorithm is developed. This algorithm is predicated on the search for a Nash Equilibrium between the sampler and the decision-maker. Simulation results reveal that the proposed sampler & decision-maker co-design surpasses the current literature on AoI and its variants in terms of both goal achievement utility and sparse sampling rate, signifying progress in the semantics-conscious, goal-driven sparse sampling design.

We consider a general class of nonsmooth optimal control problems with partial differential equation (PDE) constraints, which are very challenging due to its nonsmooth objective functionals and the resulting high-dimensional and ill-conditioned systems after discretization. We focus on the application of a primal-dual method, with which different types of variables can be treated individually and thus its main computation at each iteration only requires solving two PDEs. Our target is to accelerate the primal-dual method with either larger step sizes or operator learning techniques. For the accelerated primal-dual method with larger step sizes, its convergence can be still proved rigorously while it numerically accelerates the original primal-dual method in a simple and universal way. For the operator learning acceleration, we construct deep neural network surrogate models for the involved PDEs. Once a neural operator is learned, solving a PDE requires only a forward pass of the neural network, and the computational cost is thus substantially reduced. The accelerated primal-dual method with operator learning is mesh-free, numerically efficient, and scalable to different types of PDEs. The acceleration effectiveness of these two techniques is promisingly validated by some preliminary numerical results.

We study the online variant of the Min-Sum Set Cover (MSSC) problem, a generalization of the well-known list update problem. In the MSSC problem, an algorithm has to maintain the time-varying permutation of the list of $n$ elements, and serve a sequence of requests $R_1, R_2, \dots, R_t, \dots$. Each $R_t$ is a subset of elements of cardinality at most $r$. For a requested set $R_t$, an online algorithm has to pay the cost equal to the position of the first element from $R_t$ on its list. Then, it may arbitrarily permute its list, paying the number of swapped adjacent element pairs. We present the first constructive deterministic algorithm for this problem, whose competitive ratio does not depend on $n$. Our algorithm is $O(r^2)$-competitive, which beats both the existential upper bound of $O(r^4)$ by Bienkowski and Mucha [AAAI '23] and the previous constructive bound of $O(r^{3/2} \cdot \sqrt{n})$ by Fotakis et al. [ICALP '20]. Furthermore, we show that our algorithm attains an asymptotically optimal competitive ratio of $O(r)$ when compared to the best fixed permutation of elements.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

北京阿比特科技有限公司