亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Empathy is critical for effective and satisfactory conversational communication. Prior efforts to measure conversational empathy mostly focus on expressed communicative intents -- that is, the way empathy is expressed. Yet, these works ignore the fact that conversation is also a collaboration involving both speakers and listeners. In contrast, we propose a multi-dimensional empathy evaluation framework to measure both expressed intents from the speaker's perspective and perceived empathy from the listener's perspective. We apply our proposed framework to analyze our internal customer-service dialogue. We find the two dimensions (expressed intent types and perceived empathy) are inter-connected, and perceived empathy has a high correlation with dialogue satisfaction levels. To reduce the annotation cost, we explore different options to automatically measure conversational empathy: prompting LLMs and training language model-based classifiers. Our experiments show that prompting methods with even popular models like GPT-4 and Flan family models perform relatively poorly on both public and our internal datasets. In contrast, instruction-finetuned classifiers based on Flan-T5 family models outperform prior works and competitive baselines. We conduct a detailed ablation study to give more insights into instruction finetuning method's strong performance.

相關內容

The neighbor-based method has become a powerful tool to handle the outlier detection problem, which aims to infer the abnormal degree of the sample based on the compactness of the sample and its neighbors. However, the existing methods commonly focus on designing different processes to locate outliers in the dataset, while the contributions of different types neighbors to outlier detection has not been well discussed. To this end, this paper studies the neighbor in the existing outlier detection algorithms and a taxonomy is introduced, which uses the three-level components of information, neighbor and methodology to define hybrid methods. This taxonomy can serve as a paradigm where a novel neighbor-based outlier detection method can be proposed by combining different components in this taxonomy. A large number of comparative experiments were conducted on synthetic and real-world datasets in terms of performance comparison and case study, and the results show that reverse K-nearest neighbor based methods achieve promising performance and dynamic selection method is suitable for working in high-dimensional space. Notably, it is verified that rationally selecting components from this taxonomy may create an algorithms superior to existing methods.

Images captured under sub-optimal illumination conditions may contain both over- and under-exposures. Current approaches mainly focus on adjusting image brightness, which may exacerbate the color tone distortion in under-exposed areas and fail to restore accurate colors in over-exposed regions. We observe that over- and under-exposed regions display opposite color tone distribution shifts with respect to each other, which may not be easily normalized in joint modeling as they usually do not have ``normal-exposed'' regions/pixels as reference. In this paper, we propose a novel method to enhance images with both over- and under-exposures by learning to estimate and correct such color shifts. Specifically, we first derive the color feature maps of the brightened and darkened versions of the input image via a UNet-based network, followed by a pseudo-normal feature generator to produce pseudo-normal color feature maps. We then propose a novel COlor Shift Estimation (COSE) module to estimate the color shifts between the derived brightened (or darkened) color feature maps and the pseudo-normal color feature maps. The COSE module corrects the estimated color shifts of the over- and under-exposed regions separately. We further propose a novel COlor MOdulation (COMO) module to modulate the separately corrected colors in the over- and under-exposed regions to produce the enhanced image. Comprehensive experiments show that our method outperforms existing approaches. Project webpage: //github.com/yiyulics/CSEC.

For facial motion capture and analysis, the dominated solutions are generally based on visual cues, which cannot protect privacy and are vulnerable to occlusions. Inertial measurement units (IMUs) serve as potential rescues yet are mainly adopted for full-body motion capture. In this paper, we propose IMUSIC to fill the gap, a novel path for facial expression capture using purely IMU signals, significantly distant from previous visual solutions.The key design in our IMUSIC is a trilogy. We first design micro-IMUs to suit facial capture, companion with an anatomy-driven IMU placement scheme. Then, we contribute a novel IMU-ARKit dataset, which provides rich paired IMU/visual signals for diverse facial expressions and performances. Such unique multi-modality brings huge potential for future directions like IMU-based facial behavior analysis. Moreover, utilizing IMU-ARKit, we introduce a strong baseline approach to accurately predict facial blendshape parameters from purely IMU signals. Specifically, we tailor a Transformer diffusion model with a two-stage training strategy for this novel tracking task. The IMUSIC framework empowers us to perform accurate facial capture in scenarios where visual methods falter and simultaneously safeguard user privacy. We conduct extensive experiments about both the IMU configuration and technical components to validate the effectiveness of our IMUSIC approach. Notably, IMUSIC enables various potential and novel applications, i.e., privacy-protecting facial capture, hybrid capture against occlusions, or detecting minute facial movements that are often invisible through visual cues. We will release our dataset and implementations to enrich more possibilities of facial capture and analysis in our community.

The ability of Large Language Models (LLMs) to critique and refine their reasoning is crucial for their application in evaluation, feedback provision, and self-improvement. This paper introduces CriticBench, a comprehensive benchmark designed to assess LLMs' abilities to critique and rectify their reasoning across a variety of tasks. CriticBench encompasses five reasoning domains: mathematical, commonsense, symbolic, coding, and algorithmic. It compiles 15 datasets and incorporates responses from three LLM families. Utilizing CriticBench, we evaluate and dissect the performance of 17 LLMs in generation, critique, and correction reasoning, i.e., GQC reasoning. Our findings reveal: (1) a linear relationship in GQC capabilities, with critique-focused training markedly enhancing performance; (2) a task-dependent variation in correction effectiveness, with logic-oriented tasks being more amenable to correction; (3) GQC knowledge inconsistencies that decrease as model size increases; and (4) an intriguing inter-model critiquing dynamic, where stronger models are better at critiquing weaker ones, while weaker models can surprisingly surpass stronger ones in their self-critique. We hope these insights into the nuanced critique-correct reasoning of LLMs will foster further research in LLM critique and self-improvement.

Effective multi-intersection collaboration is pivotal for reinforcement-learning-based traffic signal control to alleviate congestion. Existing work mainly chooses neighboring intersections as collaborators. However, quite an amount of congestion, even some wide-range congestion, is caused by non-neighbors failing to collaborate. To address these issues, we propose to separate the collaborator selection as a second policy to be learned, concurrently being updated with the original signal-controlling policy. Specifically, the selection policy in real-time adaptively selects the best teammates according to phase- and intersection-level features. Empirical results on both synthetic and real-world datasets provide robust validation for the superiority of our approach, offering significant improvements over existing state-of-the-art methods. The code is available at //github.com/AnonymousAccountss/CoSLight.

A proof of quantumness is an efficiently verifiable interactive test that an efficient quantum computer can pass, but all efficient classical computers cannot (under some cryptographic assumption). Such protocols play a crucial role in the certification of quantum devices. Existing single-round protocols (like asking the quantum computer to factor a large number) require large quantum circuits, whereas multi-round ones use smaller circuits but require experimentally challenging mid-circuit measurements. As such, current proofs of quantumness are out of reach for near-term devices. In this work, we construct efficient single-round proofs of quantumness based on existing knowledge assumptions. While knowledge assumptions have not been previously considered in this context, we show that they provide a natural basis for separating classical and quantum computation. Specifically, we show that multi-round protocols based on Decisional Diffie-Hellman (DDH) or Learning With Errors (LWE) can be "compiled" into single-round protocols using a knowledge-of-exponent assumption or knowledge-of-lattice-point assumption, respectively. We also prove an adaptive hardcore-bit statement for a family of claw-free functions based on DDH, which might be of independent interest. Previous approaches to constructing single-round protocols relied on the random oracle model and thus incurred the overhead associated with instantiating the oracle with a cryptographic hash function. In contrast, our protocols have the same resource requirements as their multi-round counterparts without necessitating mid-circuit measurements, making them, arguably, the most efficient single-round proofs of quantumness to date. Our work also helps in understanding the interplay between black-box/white-box reductions and cryptographic assumptions in the design of proofs of quantumness.

Artificial neural networks suffer from catastrophic forgetting when they are sequentially trained on multiple tasks. Many continual learning (CL) strategies are trying to overcome this problem. One of the most effective is the hypernetwork-based approach. The hypernetwork generates the weights of a target model based on the task's identity. The model's main limitation is that, in practice, the hypernetwork can produce completely different architectures for subsequent tasks. To solve such a problem, we use the lottery ticket hypothesis, which postulates the existence of sparse subnetworks, named winning tickets, that preserve the performance of a whole network. In the paper, we propose a method called HyperMask, which dynamically filters a target network depending on the CL task. The hypernetwork produces semi-binary masks to obtain dedicated target subnetworks. Moreover, due to the lottery ticket hypothesis, we can use a single network with weighted subnets. Depending on the task, the importance of some weights may be dynamically enhanced while others may be weakened. HyperMask achieves competitive results in several CL datasets and, in some scenarios, goes beyond the state-of-the-art scores, both with derived and unknown task identities.

Deep Neural Network (DNN) accelerators are extensively used to improve the computational efficiency of DNNs, but are prone to faults through Single-Event Upsets (SEUs). In this work, we present an in-depth analysis of the impact of SEUs on a Systolic Array (SA) based DNN accelerator. A fault injection campaign is performed through a Register-Transfer Level (RTL) based simulation environment to improve the observability of each hardware block, including the SA itself as well as the post-processing pipeline. From this analysis, we present the sensitivity, independent of a DNN model architecture, for various flip-flop groups both in terms of fault propagation probability and fault magnitude. This allows us to draw detailed conclusions and determine optimal mitigation strategies.

Neural implicit representations have recently demonstrated considerable potential in the field of visual simultaneous localization and mapping (SLAM). This is due to their inherent advantages, including low storage overhead and representation continuity. However, these methods necessitate the size of the scene as input, which is impractical for unknown scenes. Consequently, we propose NeB-SLAM, a neural block-based scalable RGB-D SLAM for unknown scenes. Specifically, we first propose a divide-and-conquer mapping strategy that represents the entire unknown scene as a set of sub-maps. These sub-maps are a set of neural blocks of fixed size. Then, we introduce an adaptive map growth strategy to achieve adaptive allocation of neural blocks during camera tracking and gradually cover the whole unknown scene. Finally, extensive evaluations on various datasets demonstrate that our method is competitive in both mapping and tracking when targeting unknown environments.

Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.

北京阿比特科技有限公司