亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In a recent work, Chen, Hoza, Lyu, Tal and Wu (FOCS 2023) showed an improved error reduction framework for the derandomization of regular read-once branching programs (ROBPs). Their result is based on a clever modification to the inverse Laplacian perspective of space-bounded derandomization, which was originally introduced by Ahmadinejad, Kelner, Murtagh, Peebles, Sidford and Vadhan (FOCS 2020). In this work, we give an alternative error reduction framework for regular ROBPs. Our new framework is based on a binary recursive formula from the work of Chattopadhyay and Liao (CCC 2020), that they used to construct weighted pseudorandom generators (WPRGs) for general ROBPs. Based on our new error reduction framework, we give alternative proofs to the following results for regular ROBPs of length $n$ and width $w$, both of which were proved in the work of Chen et al. using their error reduction: $\bullet$ There is a WPRG with error $\varepsilon$ that has seed length $\tilde{O}(\log(n)(\sqrt{\log(1/\varepsilon)}+\log(w))+\log(1/\varepsilon)).$ $\bullet$ There is a (non-black-box) deterministic algorithm which estimates the expectation of any such program within error $\pm\varepsilon$ with space complexity $\tilde{O}(\log(nw)\cdot\log\log(1/\varepsilon)).$ (This was first proved in the work of Ahmadinejad et al., but the proof by Chen et al. is simpler.) Because of the binary recursive nature of our new framework, both of our proofs are based on a straightforward induction that is arguably simpler than the Laplacian-based proof in the work of Chen et al.

相關內容

Refreshable tactile displays (RTDs) are predicted to soon become a viable option for the provision of accessible graphics for people who are blind or have low vision (BLV). This new technology for the tactile display of braille and graphics, usually using raised pins, makes it easier to generate and access a large number of graphics. However, it differs from existing tactile graphics in terms of scale, height and fidelity. Here, we share the perspectives of four key stakeholders -- blind touch readers, vision specialist teachers, accessible format producers and assistive technology providers -- to explore the potential uses, advantages and needs relating to the introduction of RTDs. We also provide advice on what role the data visualisation community can take to help ensure that people who are BLV are best able to benefit from the introduction of affordable RTDs.

This study introduces the Lower Ricci Curvature (LRC), a novel, scalable, and scale-free discrete curvature designed to enhance community detection in networks. Addressing the computational challenges posed by existing curvature-based methods, LRC offers a streamlined approach with linear computational complexity, making it well-suited for large-scale network analysis. We further develop an LRC-based preprocessing method that effectively augments popular community detection algorithms. Through comprehensive simulations and applications on real-world datasets, including the NCAA football league network, the DBLP collaboration network, the Amazon product co-purchasing network, and the YouTube social network, we demonstrate the efficacy of our method in significantly improving the performance of various community detection algorithms.

Crowdsourcing services, such as Waze and Google Maps, leverage a mass of mobile users to learn massive point-of-interest (PoI) information while traveling and share it as a public good. Given that crowdsourced users mind their travel costs and possess various preferences over the PoI information along different paths, we formulate the problem as a novel non-atomic multi-path routing game with positive network externalities among users in social information sharing, which distinguishes itself from the routing game literature. In the absence of any incentive design, our price of anarchy (PoA) analysis shows that users' selfish routing on the path with the lowest cost will limit information diversity and lead to an arbitrarily large efficiency loss from the social optimum. This motivates us to design effective incentive mechanisms to remedy while upholding desirable properties such as individual rationality, incentive compatibility, and budget balance for practical feasibility. Moreover, our mechanisms are designed with incomplete information, as they do not rely on individual user's path preferences, thereby ensuring user privacy. To start with, we present a non-monetary mechanism called Adaptive Information Restriction (AIR) that imposes fractions on users' access to the public good as an indirect penalty. By adapting penalty fractions to the actual user flows along different paths, our AIR achieves the first PoA of $\frac{1}{4}$ for the problem. Then, we delve into a monetary mechanism called Adaptive Side-Payment (ASP) that charges or rewards side payments over users choosing certain paths. With those side payments well-tailored, ASP significantly improves the PoA to $\frac{1}{2}$.

The typical federated learning workflow requires communication between a central server and a large set of clients synchronizing model parameters between each other. The current frameworks use communication protocols not suitable for resource-constrained devices and are either hard to deploy or require high-throughput links not available on these devices. In this paper, we present a generic message framework using CBOR for communication with existing federated learning frameworks optimised for use with resource-constrained devices and low power and lossy network links. We evaluate the resulting message sizes against JSON serialized messages where compare both with model parameters resulting in optimal and worst case serialization length, and with a real-world LeNet-5 model. Our benchmarks show that with our approach, messages are up to 75 % smaller in size when compared to the JSON alternative.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

The chronological order of user-item interactions can reveal time-evolving and sequential user behaviors in many recommender systems. The items that users will interact with may depend on the items accessed in the past. However, the substantial increase of users and items makes sequential recommender systems still face non-trivial challenges: (1) the hardness of modeling the short-term user interests; (2) the difficulty of capturing the long-term user interests; (3) the effective modeling of item co-occurrence patterns. To tackle these challenges, we propose a memory augmented graph neural network (MA-GNN) to capture both the long- and short-term user interests. Specifically, we apply a graph neural network to model the item contextual information within a short-term period and utilize a shared memory network to capture the long-range dependencies between items. In addition to the modeling of user interests, we employ a bilinear function to capture the co-occurrence patterns of related items. We extensively evaluate our model on five real-world datasets, comparing with several state-of-the-art methods and using a variety of performance metrics. The experimental results demonstrate the effectiveness of our model for the task of Top-K sequential recommendation.

Knowledge graph (KG) embedding encodes the entities and relations from a KG into low-dimensional vector spaces to support various applications such as KG completion, question answering, and recommender systems. In real world, knowledge graphs (KGs) are dynamic and evolve over time with addition or deletion of triples. However, most existing models focus on embedding static KGs while neglecting dynamics. To adapt to the changes in a KG, these models need to be re-trained on the whole KG with a high time cost. In this paper, to tackle the aforementioned problem, we propose a new context-aware Dynamic Knowledge Graph Embedding (DKGE) method which supports the embedding learning in an online fashion. DKGE introduces two different representations (i.e., knowledge embedding and contextual element embedding) for each entity and each relation, in the joint modeling of entities and relations as well as their contexts, by employing two attentive graph convolutional networks, a gate strategy, and translation operations. This effectively helps limit the impacts of a KG update in certain regions, not in the entire graph, so that DKGE can rapidly acquire the updated KG embedding by a proposed online learning algorithm. Furthermore, DKGE can also learn KG embedding from scratch. Experiments on the tasks of link prediction and question answering in a dynamic environment demonstrate the effectiveness and efficiency of DKGE.

The task of detecting 3D objects in point cloud has a pivotal role in many real-world applications. However, 3D object detection performance is behind that of 2D object detection due to the lack of powerful 3D feature extraction methods. In order to address this issue, we propose to build a 3D backbone network to learn rich 3D feature maps by using sparse 3D CNN operations for 3D object detection in point cloud. The 3D backbone network can inherently learn 3D features from almost raw data without compressing point cloud into multiple 2D images and generate rich feature maps for object detection. The sparse 3D CNN takes full advantages of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network achievable. Empirical experiments are conducted on the KITTI benchmark and results show that the proposed method can achieve state-of-the-art performance for 3D object detection.

北京阿比特科技有限公司