亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This article provides an analytical framework for how to simulate human-like thought processes within a computer. It describes how attention and memory should be structured, updated, and utilized to search for associative additions to the stream of thought. The focus is on replicating the dynamics of the mammalian working memory system, which features two forms of persistent activity: sustained firing (preserving information on the order of seconds) and synaptic potentiation (preserving information from minutes to hours). The article uses a series of over 40 original figures to systematically demonstrate how the iterative updating of these working memory stores provides functional structure to behavior, cognition, and consciousness. In an AI implementation, these two memory stores should be updated continuously and in an iterative fashion, meaning each state should preserve a proportion of the coactive representations from the state before it. Thus, the set of concepts in working memory will evolve gradually and incrementally over time. This makes each state a revised iteration of the preceding state and causes successive states to overlap and blend with respect to the information they contain. Transitions between states happen as persistent activity spreads activation energy throughout the hierarchical network searching long-term memory for the most appropriate representation to be added to the global workspace. The result is a chain of associatively linked intermediate states capable of advancing toward a solution or goal. Iterative updating is conceptualized here as an information processing strategy, a model of working memory, a theory of consciousness, and an algorithm for designing and programming artificial general intelligence.

相關內容

The advances of deep learning (DL) have paved the way for automatic software vulnerability repair approaches, which effectively learn the mapping from the vulnerable code to the fixed code. Nevertheless, existing DL-based vulnerability repair methods face notable limitations: 1) they struggle to handle lengthy vulnerable code, 2) they treat code as natural language texts, neglecting its inherent structure, and 3) they do not tap into the valuable expert knowledge present in the expert system. To address this, we propose VulMaster, a Transformer-based neural network model that excels at generating vulnerability repairs by comprehensively understanding the entire vulnerable code, irrespective of its length. This model also integrates diverse information, encompassing vulnerable code structures and expert knowledge from the CWE system. We evaluated VulMaster on a real-world C/C++ vulnerability repair dataset comprising 1,754 projects with 5,800 vulnerable functions. The experimental results demonstrated that VulMaster exhibits substantial improvements compared to the learning-based state-of-the-art vulnerability repair approach. Specifically, VulMaster improves the EM, BLEU, and CodeBLEU scores from 10.2\% to 20.0\%, 21.3\% to 29.3\%, and 32.5\% to 40.9\%, respectively.

For analysing real-world networks, graph representation learning is a popular tool. These methods, such as a graph autoencoder (GAE), typically rely on low-dimensional representations, also called embeddings, which are obtained through minimising a loss function; these embeddings are used with a decoder for downstream tasks such as node classification and edge prediction. While GAEs tend to be fairly accurate, they suffer from scalability issues. For improved speed, a Local2Global approach, which combines graph patch embeddings based on eigenvector synchronisation, was shown to be fast and achieve good accuracy. Here we propose L2G2G, a Local2Global method which improves GAE accuracy without sacrificing scalability. This improvement is achieved by dynamically synchronising the latent node representations, while training the GAEs. It also benefits from the decoder computing an only local patch loss. Hence, aligning the local embeddings in each epoch utilises more information from the graph than a single post-training alignment does, while maintaining scalability. We illustrate on synthetic benchmarks, as well as real-world examples, that L2G2G achieves higher accuracy than the standard Local2Global approach and scales efficiently on the larger data sets. We find that for large and dense networks, it even outperforms the slow, but assumed more accurate, GAEs.

We introduce a novel framework for incorporating human expertise into algorithmic predictions. Our approach focuses on the use of human judgment to distinguish inputs which `look the same' to any feasible predictive algorithm. We argue that this framing clarifies the problem of human/AI collaboration in prediction tasks, as experts often have access to information -- particularly subjective information -- which is not encoded in the algorithm's training data. We use this insight to develop a set of principled algorithms for selectively incorporating human feedback only when it improves the performance of any feasible predictor. We find empirically that although algorithms often outperform their human counterparts on average, human judgment can significantly improve algorithmic predictions on specific instances (which can be identified ex-ante). In an X-ray classification task, we find that this subset constitutes nearly 30% of the patient population. Our approach provides a natural way of uncovering this heterogeneity and thus enabling effective human-AI collaboration.

Neural Style Transfer (NST) refers to a class of algorithms able to manipulate an element, most often images, to adopt the appearance or style of another one. Each element is defined as a combination of Content and Style: the Content can be conceptually defined as the what and the Style as the how of said element. In this context, we propose a custom NST framework for transferring a set of styles to the motion of a robotic manipulator, e.g., the same robotic task can be carried out in an angry, happy, calm, or sad way. An autoencoder architecture extracts and defines the Content and the Style of the target robot motions. A Twin Delayed Deep Deterministic Policy Gradient (TD3) network generates the robot control policy using the loss defined by the autoencoder. The proposed Neural Policy Style Transfer TD3 (NPST3) alters the robot motion by introducing the trained style. Such an approach can be implemented either offline, for carrying out autonomous robot motions in dynamic environments, or online, for adapting at runtime the style of a teleoperated robot. The considered styles can be learned online from human demonstrations. We carried out an evaluation with human subjects enrolling 73 volunteers, asking them to recognize the style behind some representative robotic motions. Results show a good recognition rate, proving that it is possible to convey different styles to a robot using this approach.

Accurate simulation techniques are indispensable to efficiently propose new memory or architectural organizations. As implementing new hardware concepts in real systems is often not feasible, cycle-accurate simulators employed together with certain benchmarks are commonly used. However, detailed simulators may take too much time to execute these programs until completion. Therefore, several techniques aimed at reducing this time are usually employed. These schemes select fragments of the source code considered as representative of the entire application's behaviour -- mainly in terms of performance, but not plenty considering the behaviour of cache memory levels -- and only these intervals are simulated. Our hypothesis is that the different simulation windows currently employed when evaluating microarchitectural proposals, especially those involving the last level cache (LLC), do not reproduce the overall cache behaviour during the entire execution, potentially leading to wrong conclusions on the real performance of the proposals assessed. In this work, we first demonstrate this hypothesis by evaluating different cache replacement policies using various typical simulation approaches. Consequently, we also propose a simulation strategy, based on the applications' LLC activity, which mimics the overall behaviour of the cache much closer than conventional simulation intervals. Our proposal allows a fairer comparison between cache-related approaches as it reports, on average, a number of changes in the relative order among the policies assessed -- with respect to the full simulation -- more than 30\% lower than that of conventional strategies, maintaining the simulation time largely unchanged and without losing accuracy on performance terms, especially for memory-intensive applications.

Language models have become a critical technology to tackling a wide range of natural language processing tasks, yet many details about how the best-performing language models were developed are not reported. In particular, information about their pretraining corpora is seldom discussed: commercial language models rarely provide any information about their data; even open models rarely release datasets they are trained on, or an exact recipe to reproduce them. As a result, it is challenging to conduct certain threads of language modeling research, such as understanding how training data impacts model capabilities and shapes their limitations. To facilitate open research on language model pretraining, we release Dolma, a three trillion tokens English corpus, built from a diverse mixture of web content, scientific papers, code, public-domain books, social media, and encyclopedic materials. In addition, we open source our data curation toolkit to enable further experimentation and reproduction of our work. In this report, we document Dolma, including its design principles, details about its construction, and a summary of its contents. We interleave this report with analyses and experimental results from training language models on intermediate states of Dolma to share what we have learned about important data curation practices, including the role of content or quality filters, deduplication, and multi-source mixing. Dolma has been used to train OLMo, a state-of-the-art, open language model and framework designed to build and study the science of language modeling.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: //github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司