In this paper, we prove convergence for contractive time discretisation schemes for semi-linear stochastic evolution equations with irregular Lipschitz nonlinearities, initial values, and additive or multiplicative Gaussian noise on $2$-smooth Banach spaces $X$. The leading operator $A$ is assumed to generate a strongly continuous semigroup $S$ on $X$, and the focus is on non-parabolic problems. The main result concerns convergence of the uniform strong error $$E_{k}^{\infty} := \Big(\mathbb{E} \sup_{j\in \{0, \ldots, N_k\}} \|U(t_j) - U^j\|_X^p\Big)^{1/p} \to 0\quad (k \to 0),$$ where $p \in [2,\infty)$, $U$ is the mild solution, $U^j$ is obtained from a time discretisation scheme, $k$ is the step size, and $N_k = T/k$ for final time $T>0$. This generalises previous results to a larger class of admissible nonlinearities and noise, as well as rough initial data from the Hilbert space case to more general spaces. We present a proof based on a regularisation argument. Within this scope, we extend previous quantified convergence results for more regular nonlinearity and noise from Hilbert to $2$-smooth Banach spaces. The uniform strong error cannot be estimated in terms of the simpler pointwise strong error $$E_k := \bigg(\sup_{j\in \{0,\ldots,N_k\}}\mathbb{E} \|U(t_j) - U^{j}\|_X^p\bigg)^{1/p},$$ which most of the existing literature is concerned with. Our results are illustrated for a variant of the Schr\"odinger equation, for which previous convergence results were not applicable.
The solution approximation for partial differential equations (PDEs) can be substantially improved using smooth basis functions. The recently introduced mollified basis functions are constructed through mollification, or convolution, of cell-wise defined piecewise polynomials with a smooth mollifier of certain characteristics. The properties of the mollified basis functions are governed by the order of the piecewise functions and the smoothness of the mollifier. In this work, we exploit the high-order and high-smoothness properties of the mollified basis functions for solving PDEs through the point collocation method. The basis functions are evaluated at a set of collocation points in the domain. In addition, boundary conditions are imposed at a set of boundary collocation points distributed over the domain boundaries. To ensure the stability of the resulting linear system of equations, the number of collocation points is set larger than the total number of basis functions. The resulting linear system is overdetermined and is solved using the least square technique. The presented numerical examples confirm the convergence of the proposed approximation scheme for Poisson, linear elasticity, and biharmonic problems. We study in particular the influence of the mollifier and the spatial distribution of the collocation points.
Motivated by optimization with differential equations, we consider optimization problems with Hilbert spaces as decision spaces. As a consequence of their infinite dimensionality, the numerical solution necessitates finite dimensional approximations and discretizations. We develop an approximation framework and demonstrate criticality measure-based error estimates. We consider criticality measures inspired by those used within optimization methods, such as semismooth Newton and (conditional) gradient methods. Furthermore, we show that our error estimates are order-optimal. Our findings augment existing distance-based error estimates, but do not rely on strong convexity or second-order sufficient optimality conditions. Moreover, our error estimates can be used for code verification and validation. We illustrate our theoretical convergence rates on linear, semilinear, and bilinear PDE-constrained optimization.
This essay provides a comprehensive analysis of the optimization and performance evaluation of various routing algorithms within the context of computer networks. Routing algorithms are critical for determining the most efficient path for data transmission between nodes in a network. The efficiency, reliability, and scalability of a network heavily rely on the choice and optimization of its routing algorithm. This paper begins with an overview of fundamental routing strategies, including shortest path, flooding, distance vector, and link state algorithms, and extends to more sophisticated techniques.
We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore, if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.
Explicit time integration schemes coupled with Galerkin discretizations of time-dependent partial differential equations require solving a linear system with the mass matrix at each time step. For applications in structural dynamics, the solution of the linear system is frequently approximated through so-called mass lumping, which consists in replacing the mass matrix by some diagonal approximation. Mass lumping has been widely used in engineering practice for decades already and has a sound mathematical theory supporting it for finite element methods using the classical Lagrange basis. However, the theory for more general basis functions is still missing. Our paper partly addresses this shortcoming. Some special and practically relevant properties of lumped mass matrices are proved and we discuss how these properties naturally extend to banded and Kronecker product matrices whose structure allows to solve linear systems very efficiently. Our theoretical results are applied to isogeometric discretizations but are not restricted to them.
In this paper, we present a novel class of high-order Runge--Kutta (RK) discontinuous Galerkin (DG) schemes for hyperbolic conservation laws. The new method extends beyond the traditional method of lines framework and utilizes stage-dependent polynomial spaces for the spatial discretization operators. To be more specific, two different DG operators, associated with $\mathcal{P}^k$ and $\mathcal{P}^{k-1}$ piecewise polynomial spaces, are used at different RK stages. The resulting method is referred to as the sdRKDG method. It features fewer floating-point operations and may achieve larger time step sizes. For problems without sonic points, we observe optimal convergence for all the sdRKDG schemes; and for problems with sonic points, we observe that a subset of the sdRKDG schemes remains optimal. We have also conducted von Neumann analysis for the stability and error of the sdRKDG schemes for the linear advection equation in one dimension. Numerical tests, for problems including two-dimensional Euler equations for gas dynamics, are provided to demonstrate the performance of the new method.
Mass lumping techniques are commonly employed in explicit time integration schemes for problems in structural dynamics and both avoid solving costly linear systems with the consistent mass matrix and increase the critical time step. In isogeometric analysis, the critical time step is constrained by so-called "outlier" frequencies, representing the inaccurate high frequency part of the spectrum. Removing or dampening these high frequencies is paramount for fast explicit solution techniques. In this work, we propose robust mass lumping and outlier removal techniques for nontrivial geometries, including multipatch and trimmed geometries. Our lumping strategies provably do not deteriorate (and often improve) the CFL condition of the original problem and are combined with deflation techniques to remove persistent outlier frequencies. Numerical experiments reveal the advantages of the method, especially for simulations covering large time spans where they may halve the number of iterations with little or no effect on the numerical solution.
We analyze the Schr\"odingerisation method for quantum simulation of a general class of non-unitary dynamics with inhomogeneous source terms. The Schr\"odingerisation technique, introduced in \cite{JLY22a,JLY23}, transforms any linear ordinary and partial differential equations with non-unitary dynamics into a system under unitary dynamics via a warped phase transition that maps the equations into a higher dimension, making them suitable for quantum simulation. This technique can also be applied to these equations with inhomogeneous terms modeling source or forcing terms or boundary and interface conditions, and discrete dynamical systems such as iterative methods in numerical linear algebra, through extra equations in the system. Difficulty airses with the presense of inhomogeneous terms since it can change the stability of the original system. In this paper, we systematically study--both theoretically and numerically--the important issue of recovering the original variables from the Schr\"odingerized equations, even when the evolution operator contains unstable modes. We show that even with unstable modes, one can still construct a stable scheme, yet to recover the original variable one needs to use suitable data in the extended space. We analyze and compare both the discrete and continuous Fourier transforms used in the extended dimension, and derive corresponding error estimates, which allows one to use the more appropriate transform for specific equations. We also provide a smoother initialization for the Schrod\"odingerized system to gain higher order accuracy in the extended space. We homogenize the inhomogeneous terms with a stretch transformation, making it easier to recover the original variable. Our recovering technique also provides a simple and generic framework to solve general ill-posed problems in a computationally stable way.
Learning unknown stochastic differential equations (SDEs) from observed data is a significant and challenging task with applications in various fields. Current approaches often use neural networks to represent drift and diffusion functions, and construct likelihood-based loss by approximating the transition density to train these networks. However, these methods often rely on one-step stochastic numerical schemes, necessitating data with sufficiently high time resolution. In this paper, we introduce novel approximations to the transition density of the parameterized SDE: a Gaussian density approximation inspired by the random perturbation theory of dynamical systems, and its extension, the dynamical Gaussian mixture approximation (DynGMA). Benefiting from the robust density approximation, our method exhibits superior accuracy compared to baseline methods in learning the fully unknown drift and diffusion functions and computing the invariant distribution from trajectory data. And it is capable of handling trajectory data with low time resolution and variable, even uncontrollable, time step sizes, such as data generated from Gillespie's stochastic simulations. We then conduct several experiments across various scenarios to verify the advantages and robustness of the proposed method.
We introduce an algebraic concept of the frame for abstract conditional independence (CI) models, together with basic operations with respect to which such a frame should be closed: copying and marginalization. Three standard examples of such frames are (discrete) probabilistic CI structures, semi-graphoids and structural semi-graphoids. We concentrate on those frames which are closed under the operation of set-theoretical intersection because, for these, the respective families of CI models are lattices. This allows one to apply the results from lattice theory and formal concept analysis to describe such families in terms of implications among CI statements. The central concept of this paper is that of self-adhesivity defined in algebraic terms, which is a combinatorial reflection of the self-adhesivity concept studied earlier in context of polymatroids and information theory. The generalization also leads to a self-adhesivity operator defined on the hyper-level of CI frames. We answer some of the questions related to this approach and raise other open questions. The core of the paper is in computations. The combinatorial approach to computation might overcome some memory and space limitation of software packages based on polyhedral geometry, in particular, if SAT solvers are utilized. We characterize some basic CI families over 4 variables in terms of canonical implications among CI statements. We apply our method in information-theoretical context to the task of entropic region demarcation over 5 variables.