亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we develop the Generalised Recombination Interpolation Method (GRIM) for finding sparse approximations of functions initially given as linear combinations of some (large) number of simpler functions. GRIM is a hybrid of dynamic growth-based interpolation techniques and thinning-based reduction techniques. We establish that the number of non-zero coefficients in the approximation returned by GRIM is controlled by the concentration of the data. In the case that the functions involved are Lip$(\gamma)$ for some $\gamma > 0$ in the sense of Stein, we obtain improved convergence properties for GRIM. In particular, we prove that the level of data concentration required to guarantee that GRIM finds a good sparse approximation is decreasing with respect to the regularity parameter $\gamma > 0$.

相關內容

Nonlinearity parameter tomography leads to the problem of identifying a coefficient in a nonlinear wave equation (such as the Westervelt equation) modeling ultrasound propagation. In this paper we transfer this into frequency domain, where the Westervelt equation gets replaced by a coupled system of Helmholtz equations with quadratic nonlinearities. For the case of the to-be-determined nonlinearity coefficient being a characteristic function of an unknown, not necessarily connected domain $D$, we devise and test a reconstruction algorithm based on weighted point source approximations combined with Newton's method. In a more abstract setting, convergence of a regularised Newton type method for this inverse problem is proven by verifying a range invariance condition of the forward operator and establishing injectivity of its linearisation.

Dynamically typed programming languages are popular in education and the software industry. While presenting a low barrier to entry, they suffer from run-time type errors and longer-term problems in code quality and maintainability. Statically typed languages, while showing strength in these aspects, lack in learnability and ease of use. In particular, fixing type errors poses challenges to both novice users and experts. Further, compiler-type error messages are presented in a static way that is biased toward the first occurrence of the error in the program code. To help users resolve such type errors, we introduce ChameleonIDE, a type debugging tool that presents type errors to the user in an unbiased way, allowing them to explore the full context of where the errors could occur. Programmers can interactively verify the steps of reasoning against their intention. Through three studies involving real programmers, we showed that ChameleonIDE is more effective in fixing type errors than traditional text-based error messages. This difference is more significant in harder tasks. Further, programmers actively using ChameleonIDE's interactive features are shown to be more efficient in fixing type errors than passively reading the type error output.

We present and analyze a high-order discontinuous Galerkin method for the space discretization of the wave propagation model in thermo-poroelastic media. The proposed scheme supports general polytopal grids. Stability analysis and $hp$-version error estimates in suitable energy norms are derived for the semi-discrete problem. The fully-discrete scheme is then obtained based on employing an implicit Newmark-$\beta$ time integration scheme. A wide set of numerical simulations is reported, both for the verification of the theoretical estimates and for examples of physical interest. A comparison with the results of the poroelastic model is provided too, highlighting the differences between the predictive capabilities of the two models.

The matrix sensing problem is an important low-rank optimization problem that has found a wide range of applications, such as matrix completion, phase synchornization/retrieval, robust PCA, and power system state estimation. In this work, we focus on the general matrix sensing problem with linear measurements that are corrupted by random noise. We investigate the scenario where the search rank $r$ is equal to the true rank $r^*$ of the unknown ground truth (the exact parametrized case), as well as the scenario where $r$ is greater than $r^*$ (the overparametrized case). We quantify the role of the restricted isometry property (RIP) in shaping the landscape of the non-convex factorized formulation and assisting with the success of local search algorithms. First, we develop a global guarantee on the maximum distance between an arbitrary local minimizer of the non-convex problem and the ground truth under the assumption that the RIP constant is smaller than $1/(1+\sqrt{r^*/r})$. We then present a local guarantee for problems with an arbitrary RIP constant, which states that any local minimizer is either considerably close to the ground truth or far away from it. More importantly, we prove that this noisy, overparametrized problem exhibits the strict saddle property, which leads to the global convergence of perturbed gradient descent algorithm in polynomial time. The results of this work provide a comprehensive understanding of the geometric landscape of the matrix sensing problem in the noisy and overparametrized regime.

We present DiffXPBD, a novel and efficient analytical formulation for the differentiable position-based simulation of compliant constrained dynamics (XPBD). Our proposed method allows computation of gradients of numerous parameters with respect to a goal function simultaneously leveraging a performant simulation model. The method is efficient, thus enabling differentiable simulations of high resolution geometries and degrees of freedom (DoFs). Collisions are naturally included in the framework. Our differentiable model allows a user to easily add additional optimization variables. Every control variable gradient requires the computation of only a few partial derivatives which can be computed using automatic differentiation code. We demonstrate the efficacy of the method with examples such as elastic material parameter estimation, initial value optimization, optimizing for underlying body shape and pose by only observing the clothing, and optimizing a time-varying external force sequence to match sparse keyframe shapes at specific times. Our approach demonstrates excellent efficiency and we demonstrate this on high resolution meshes with optimizations involving over 26 million degrees of freedom. Making an existing solver differentiable requires only a few modifications and the model is compatible with both modern CPU and GPU multi-core hardware.

Genito-Pelvic Pain/Penetration-Disorder (GPPPD) is a common disorder but rarely treated in routine care. Previous research documents that GPPPD symptoms can be treated effectively using internet-based psychological interventions. However, non-response remains common for all state-of-the-art treatments and it is unclear which patient groups are expected to benefit most from an internet-based intervention. Multivariable prediction models are increasingly used to identify predictors of heterogeneous treatment effects, and to allocate treatments with the greatest expected benefits. In this study, we developed and internally validated a multivariable decision tree model that predicts effects of an internet-based treatment on a multidimensional composite score of GPPPD symptoms. Data of a randomized controlled trial comparing the internet-based intervention to a waitlist control group (N =200) was used to develop a decision tree model using model-based recursive partitioning. Model performance was assessed by examining the apparent and bootstrap bias-corrected performance. The final pruned decision tree consisted of one splitting variable, joint dyadic coping, based on which two response clusters emerged. No effect was found for patients with low dyadic coping ($n$=33; $d$=0.12; 95% CI: -0.57-0.80), while large effects ($d$=1.00; 95%CI: 0.68-1.32; $n$=167) are predicted for those with high dyadic coping at baseline. The bootstrap-bias-corrected performance of the model was $R^2$=27.74% (RMSE=13.22).

For a considerable time, researchers have focused on developing a method that establishes a deep connection between the generative diffusion model and mathematical physics. Despite previous efforts, progress has been limited to the pursuit of a single specialized method. In order to advance the interpretability of diffusion models and explore new research directions, it is essential to establish a unified ODE-style generative diffusion model. Such a model should draw inspiration from physical models and possess a clear geometric meaning. This paper aims to identify various physical models that are suitable for constructing ODE-style generative diffusion models accurately from a mathematical perspective. We then summarize these models into a unified method. Additionally, we perform a case study where we use the theoretical model identified by our method to develop a range of new diffusion model methods, and conduct experiments. Our experiments on CIFAR-10 demonstrate the effectiveness of our approach. We have constructed a computational framework that attains highly proficient results with regards to image generation speed, alongside an additional model that demonstrates exceptional performance in both Inception score and FID score. These results underscore the significance of our method in advancing the field of diffusion models.

Interest in components with detailed structures increased with the progress in advanced manufacturing techniques in recent years. Parts with graded lattice elements can provide interesting mechanical, thermal, and acoustic properties compared to parts where only coarse features are included. One of these improvements is better global buckling resistance of the component. However, thin features are prone to local buckling. Normally, analyses with high computational effort are conducted on high-resolution finite element meshes to optimize parts with good global and local stability. Until recently, works focused only on either global or local buckling behavior. We use two-scale optimization based on asymptotic homogenization of elastic properties and local buckling behavior to reduce the effort of full-scale analyses. For this, we present an approach for concurrent local and global buckling optimization of parameterized graded lattice structures. It is based on a worst-case model for the homogenized buckling load factor, which acts as a safeguard against pure local buckling. Cross-modes residing on both scales are not detected. We support our theory with numerical examples and validations on dehomogenized designs, which show the capabilities of our method, and discuss the advantages and limitations of the worst-case model.

We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore, if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.

Our research deals with the optimization version of the set partition problem, where the objective is to minimize the absolute difference between the sums of the two disjoint partitions. Although this problem is known to be NP-hard and requires exponential time to solve, we propose a less demanding version of this problem where the goal is to find a locally optimal solution. In our approach, we consider the local optimality in respect to any movement of at most two elements. To accomplish this, we developed an algorithm that can generate a locally optimal solution in at most $O(N^2)$ time and $O(N)$ space. Our algorithm can handle arbitrary input precisions and does not require positive or integer inputs. Hence, it can be applied in various problem scenarios with ease.

北京阿比特科技有限公司